BESSY II sheds light on how the internal compass is constructed in magnetotactic bacteria

The magnetosomes form a chain inside the bacteria's cell shows the electron cryotomography (ECT).

The magnetosomes form a chain inside the bacteria's cell shows the electron cryotomography (ECT). © 10.1039/C7NR08493E

Experiments at BESSY II revealed how an external magnetic field changes the orientiations of chain parts.

Experiments at BESSY II revealed how an external magnetic field changes the orientiations of chain parts. © 10.1039/C7NR08493E

Bacteria exist in many shapes and with very different talents. Magnetotactic bacteria can even sense the earth’s magnetic field by making use of magnetic nanoparticles in their interior that act as an internal compass. Spanish teams and experts at Helmholtz-Zentrum Berlin have now examined the magnetic compass of Magnetospirillum gryphiswaldense at BESSY II. Their results may be helpful in designing actuation devices for nanorobots and nanosensors for biomedical applications.

Magnetotactic bacteria are usually found in freshwater and marine sediments. One species, Magnetospirillum gryphiswaldense, is easily cultivated in the lab – with or without magnetic nanoparticles in their interior depending on the presence or absence of iron in the local environment. “So these microorganisms are ideal test cases for understanding how their internal compass is constructed”, explains Lourdes Marcano, a PhD student in physics at Universidad del Pais Vasco in Leioa, Spain.

Chain of magnetic nanoparticles form compass

Magnetospirillum cells contain a number of small particles of magnetite (Fe3O4), each approx. 45 nanometers wide. These nanoparticles, called magnetosomes, are usually arranged as a chain inside the bacteria. This chain acts as a permanent dipole magnet and is able to passively reorient the whole bacteria along the Earth’s magnetic field lines. “The bacteria exist preferentially at the oxy/anoxy transition zones”, Marcano points out, “and the internal compass might help them to find the best level in the stratified water column for satisfying their nutritional requirements.” The Spanish scientists examined the shape of the magnetosomes and their arrangement inside the cells using various experimental methods such as electron cryotomography.

Isolated chains examined at BESSY II

Samples of isolated magnetosome chains were analysed at BESSY II to investigate the relative orientation between the chain’s direction and the magnetic field generated by the magnetosomes. “Current methods employed to characterise the magnetic properties of these bacteria require sampling over hundreds of non-aligned magnetosome chains. Using photoelectron emission microscopy (PEEM) and X-ray magnetic circular dichroism (XMCD) at HZB, we are able to “see” and characterise the magnetic properties of individual chains”, explains Dr. Sergio Valencia, HZB. “Being able to visualise the magnetic properties of individual magnetosome chains opens up the possibility of comparing the results with theoretical predictions.”

Helical shape

Indeed, the experiments revealed that the magnetic field orientation of the magnetosomes is not directed along the chain direction, as assumed up to now, but is slightly tilted. As the theoretical modelling of the Spanish group suggests, this tilt might explain why magnetosome chains are not straight but helical in shape.

Outlook: Nature as a model

A deeper understanding of the mechanisms determining the chain shape is very important, the scientists point out. Nature’s inventions could inspire new biomedical solutions such as nanorobots propelled by flagella systems in the direction provided by their magnetosome chain.

 

Publication in Nanoscale (2018): “Configuration of the magnetosome chain: a natural magnetic nanoarchitecture”; I. Orue, L. Marcano, P. Bender, A. Garcıa-Prieto, S. Valencia, M.A. Mawass, D. Gil-Carton, D. Alba Venero, D. Honecker, A. Garcıa-Arribas, L. Fernandez Barquın, A. Muela, M.L. Fdez-Gubieda

DOI: 10.1039/C7NR08493E

 

 

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.