Wirkungsgrad von 25,2 % für Perowskit-Silizium-Tandem-Solarzelle zertifiziert

Perowskit-basierte Tandem-Solarzellen erreichen nun Wirkungsgrade über 25%.

Perowskit-basierte Tandem-Solarzellen erreichen nun Wirkungsgrade über 25%. © HZB

Eine 1 cm2 Perowskit-Silizium-Tandem-Solarzelle erreicht einen Wirkungsgrad von 25,2%. Diese Neuigkeit wurde diese Woche auf einer Fachkonferenz in Hawaii, USA, vorgestellt. Die Zelle wurde gemeinsam vom HZB, der Universität Oxford und Oxford PV - The Perovskite CompanyTM  entwickelt. Das Fraunhofer-Institut für Solare Energiesysteme ISE hat den Wirkungsgrad zertifiziert.

„Perowskit-basierte Tandem-Solarzellen können das Licht besonders effizient nutzen und bieten daher die Chance, noch höhere Wirkungsgrade zu erreichen. Deshalb haben wir mit dem neuen Helmholtz-Innovationslabor HySPRINT unsere Expertise deutlich erweitert", sagt Prof. Dr. Rutger Schlatmann, Direktor des Kompetenzzentrums Dünnschicht- und Nanotechnologie für Photovoltaik Berlin (PVcomB) am HZB. „In der Zusammenarbeit mit Oxford PV geht es uns darum, die Perowskit-Silizium-Tandemzellen weiter zu optimieren, ihre Aufskalierbarkeit zu demonstrieren und die Integration in großflächige Solarmodule zu erleichtern. Für dieses neue Ergebnis haben wir unsere high-efficiency Silizium-Heterojunction-Bottomzelle optimiert und eine optische Anpassung zu der Topzelle entwickelt mittels einer ganz spezifischen SiOx Zwischenschicht".

Auf der Internationalen Konferenz zu Photovoltaik (World Conference on Photovoltaic Energy Conversion, WCPEC-7) in Waikoloa, Hawaii, waren Tandem-Solarzellen mit Perowskit-Schichten ein wichtiges Thema: Zwei Rekord-Zellen wurden vorgestellt, die jeweils einen zertifzierten Wirkungsgrad von 25,2% erreichten. Eine dieser Rekord-Tandemzellen kommt von dem Team um Prof. Dr. Christophe Ballif von der Ecole Polytechnique Federale de Lausanne (EPFL/CSEM), während die andere Rekord-Tandem-Solarzelle gemeinsam von dem Konsortium aus HZB, Oxford PV und der Universität Oxford  entwickelt wurde. Diese Zelle stellte der HZB-Wissenschaftler Dr. Bernd Stannowski vor. Die dritte hocheffiziente Tandemzelle mit einer Perowskitschicht erreicht eine zertifizierte Effizienz von 25,0 % und wurde von einem HZB-Team um Dr. Steve Albrecht entwickelt. 

Seit seiner Gründung im Jahr 2010 arbeitet das Unternehmen Oxford PV eng mit der Forschungsgruppe von Prof. Dr. Henry Snaith an der Universität Oxford zusammen. Im Januar 2018 gab Oxford PV seine Zusammenarbeit mit dem HZB, dem führenden deutschen Forschungszentrum für Energiematerialforschung, bekannt.

Hier finden Sie die Presseinfo von Oxford PV

Informationen zum PVcomB am HZB

Informationen zu HySPRINT am HZB

Informationen zur Arbeitsgruppe Photovoltaik und Optoelektronik an der Universität Oxford

 

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Katalysatoraktivierung und -abbau in hydrierten Iridiumoxiden
    Science Highlight
    10.12.2024
    Katalysatoraktivierung und -abbau in hydrierten Iridiumoxiden
    Die Entwicklung effizienter Katalysatoren für die Sauerstoffentwicklung (OER) ist entscheidend für den Fortschritt der Protonenaustauschmembran (PEM)-Wasserelektrolyse, wobei Iridium-basierte OER-Katalysatoren trotz der Herausforderungen im Zusammenhang mit ihrer Auflösung vielversprechend sind. Eine gemeinsame Forschung des Helmholtz-Zentrums Berlin und des Fritz-Haber-Instituts hat Einblicke in die Mechanismen der OER-Leistung und der Iridiumauflösung für amorphe hydrierte Iridiumoxide geliefert und das Verständnis dieses kritischen Prozesses vorangetrieben. Messungen an BESSY II haben dazu wesentliche Erkenntnisse geliefert.