Keywords: accelerator physics (175) cooperations (143)

News    14.06.2018

Helmholtz Association supports ATHENA with 29.99 mio. euro grant

ATHENA (“Accelerator Technology HElmholtz iNfrAstructure”) is a new research and development platform focusing on accelerator technologies and drawing on the resources of all six Helmholtz accelerator institutions (DESY, Jülich Research Centre, Helmholtz Centre Berlin, Helmholtz Centre Dresden-Rossendorf HZDR, KIT and GSI with the Helmholtz Institute of Jena). The Helmholtz Association has now decided to pay almost 30 million euros towards ATHENA as a strategic development project.

“This decision demonstrates the Helmholtz Association’s strong commitment to developing and supplying ground-breaking new accelerator technologies for solving the future challenges faced by society,” says Helmut Dosch, who is the Chairman of DESY’s Board of Directors and also the spokesperson for the Helmholtz Association’s research division Matter.

Two flagship projects in accelerator research

Together, these centres want to set up two German flagship projects in accelerator research based on innovative plasma-based particle accelerators and ultramodern laser technology: an electron accelerator at DESY in Hamburg and a hadron accelerator at HZDR. At both facilities, a range of different fields of application are to be developed, ranging from a compact free-electron laser, through novel medical uses to new applications in nuclear and particle physics. As soon as they have reached the necessary level of maturity to be put to practical use in a particular area, new compact devices could be built for use in other Helmholtz centres, as well as in universities and hospitals.

HZB contributions:

Two working groups at the HZB contribute to this project: Johannes Bahrdt's Undulators Department develops and builds two novel undulators: The world's first in-vacuum apple undulator will be used at BESSY II. The second undulator, a sophisticated refined development of the prototype, will be installed at the free-electron laser in Hamburg's lighthouse project. Thorsten Kamps' group "Generation of highly brilliant electron beams" is working on a laser-based beam diagnostic device. The aim is to characterize the properties of the electron beams generated.

“The funding of the ATHENA project is an important milestone in the ARD (Accelerator Research and Development) programme, which was set up by the Helmholtz Association in 2011,” explains Reinhard Brinkmann, one of the initiators of ARD and the head of the accelerator department at DESY. Andreas Jankowiak, head of the Institute of Accelerator Physics at the HZB and spokesman for the ARD programme, adds: "Combining the competence of all Helmholtz Accelerator Centres in this way promises groundbreaking developments and new applications for ultra-compact particle accelerators.

Strengthening competitiveness in Germany and Europe

Ralph Aßmann, the project coordinator of ATHENA and lead scientists at DESY, and Ulrich Schramm, head of laser particle acceleration at HZDR, agree that “The study of new types of plasma accelerators takes place in the context of strong international competition from the US and Asia. ATHENA is consolidating the traditional leading role of Germany’s accelerator research and supporting Germany’s international competitiveness as a place for doing science.”

The work on ATHENA is closely embedded in the wider context of European research through the EU-sponsored design study EuPRAXIA, with its 40 partner institutes, which is also coordinated by DESY. Hence the top German research project ATHENA has had a clear European perspective and orientation right from the start.

Press release by DESY




You might also be interested in
  • NEWS      05.06.2019

    Photovoltaics are growing faster than expected in the global energy system

    Dramatic cost reductions and the rapid expansion of production capacities make photovoltaics one of the most attractive technologies for a global energy turnaround. Not only the electricity sector, but also transport, heating, industry and chemical processes will in future be supplied primarily by solar power, because it is already the cheapest form of electricity generation in large parts of the world. This is where opportunities and challenges lie - at the level of the energy system as well as for research and industry. Leading international photovoltaic researchers from the Global Alliance for Solar Energy Research Institutes describe the cornerstones of future developments in an article published in the journal "Science" on 31 May. [...]

  • <p>The illustration is alluding to the laser experiment in the background and shows the structure of TGCN.</p>SCIENCE HIGHLIGHT      05.06.2019

    Organic electronics: a new semiconductor in the carbon-nitride family

    Teams from Humboldt-Universität and the Helmholtz-Zentrum Berlin have explored a new material in the carbon-nitride family. Triazine-based graphitic carbon nitride (TGCN) is a semiconductor that should be highly suitable for applications in optoelectronics. Its structure is two-dimensional and reminiscent of graphene. Unlike graphene, however, the conductivity in the direction perpendicular to its 2D planes is 65 times higher than along the planes themselves. [...]

  • NEWS      04.06.2019

    Federal Ministry of Education and Research supports the development of a miniaturised EPR spectrometer

    Several research institutions are developing a miniaturized electron paramagnetic resonance (EPR) device with industrial partner Bruker to investigate semiconductor materials, solar cells, catalysts and electrodes for fuel cells and batteries. The Federal Ministry of Education and Research (BMBF) is funding the "EPR-on-a-Chip" or EPRoC project with 6.7 million euros. On June 3, 2019, the kick-off meeting took place at the Helmholtz-Zentrum Berlin. [...]