Silicon heterojunction solar cell with a certified 23.1 % energy conversion efficiency

After further optimization of the baseline process for industrial silicon heterojunction (SHJ) solar cells, the accredited metrology lab ISFH CalTeC now certified an efficiency of 23.1 % for a 4 cm² solar cell. This performance is among the best in the world and demonstrates the leading role of HZB in this technology in Germany and Europe.

Within the institute PVcomB at HZB we develop SHJ cells with the focus on improving industrial applicable materials and processes in collaboration with industry partners (e.g. Meyer Burger, Von Ardenne, Singulus). Moreover, new types of solar cells with the potential to surpass the efficiency limit of silicon-based cells, such as perovskite/SHJ tandem junctions, are developed at HZB, partially in collaboration with industry (Oxford PV). Results will be presented this year at the international PV conferences WCPEC (June 10-15, Hawaii) and EUPVSEC (Sep 24-28, Brussels).

Background

Silicon heterojunction (SHJ) solar cells are made of crystalline silicon wafers using passivated contacts for both polarities based on i/n and i/p stacks of thin-film silicon alloys, such as amorphous silicon, nano-crystalline silicon or silicon oxide. Due to a high silicon wafer quality and the excellent surface passivation SHJ solar cells reach very high conversion efficiencies with highest open circuit voltages >740 mV and low temperature coefficient <0.3 %/K. With this type of two-side contacted cell Kaneka Corp. (Japan) holds the world record with a 25.1 % conversion efficiency. Recently, they attracted attention with 26.7 % for an all-rear-side contacted (IBC) SHJ cell, which is currently the world record for a silicon-based solar cell. For commercial production, the lean process sequence consisting of only four major process steps, all below <200°C processing temperature, facilitate cost-effective cell production.

(bs)

  • Copy link

You might also be interested in

  • New Helmholtz Young Investigator Group at HZB on perovskite solar cells
    News
    26.06.2025
    New Helmholtz Young Investigator Group at HZB on perovskite solar cells
    Silvia Mariotti starts building up the new Helmholtz Young Investigator Group ‘Perovskite-based multi-junction solar cells’. The perovskite expert, who was previously based at Okinawa University in Japan, aims to advance the development of multi-junction solar cells made from different perovskite layers.
  • Hydrogen storage in MXene: It all depends on diffusion processes
    Science Highlight
    23.06.2025
    Hydrogen storage in MXene: It all depends on diffusion processes
    Two-dimensional (2D) materials such as MXene are of great interest for hydrogen storage. An expert from HZB has investigated the diffusion of hydrogen in MXene using density functional theory. This modelling provides valuable insights into the key diffusion mechanisms and hydrogen's interaction with Ti₃C₂ MXene, offering a solid foundation for further experimental research.
  • HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    News
    19.06.2025
    HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) and the National University of "Kyiv-Mohyla Academy" (NaUKMA) have signed a Memorandum of Understanding (MoU). The MoU serves as the starting point for collaborative research, academic exchange, and capacity-building between the two institutions. Actions will be taken to establish the Joint Research and Policy Laboratory at NaUKMA in Kyiv. The aim of the future laboratory is to jointly develop research and policy analysis, focusing on the energy and climate dimensions of Ukraine’s EU integration.