Nanoröhrchen sollen Bildschirme zum Leuchten bringen

Der von IBM-Deutschland gestiftete Hahn-Meitner-Technologie-Transfer- Preis zeichnet Materialforscher des Hahn-Meitner-Instituts aus. Fünf Forscher haben unter Leitung von Prof. Dr. Alois Weidinger für ihre innovativen - und vermarktungsfähigen - Entwicklungsarbeiten erhalten. Ihre Forschungsergebnisse könnten die Herstellung neuartiger Flachbildschirme, so genannter Feld-Emissions-Displays (FED), entscheidend verbessern.

Der mit 10.000 Mark dotierte und im Abstand von zwei Jahren verliehene Preis wurde am 19. Oktober in Anwesenheit von Berlins Senator für Wissenschaft, Forschung und Kultur, Prof. Christoph Stölzl, und dem Vorsitzenden der Geschäftsführung der IBM-Deutschland GmbH, Erwin Staudt, übergeben.

Flachbildschirme sind dabei, die alten Bildröhren-Monitore ins Museum zu schicken, denn die neuen kleinen Geräte bieten überzeugende praktische Vorteile. Nachteilig sind jedoch vor allem die hohen Kosten, so dass weltweit an neuen Verfahren gearbeitet wird, damit Flachbildschirme billiger und noch besser werden.

Eine technologische Alternative zu den heute üblichen Flüssigkristallanzeigen (LCD) bieten Feld-Emissions-Displays (FED). Mit aktiv leuchtenden Bildpunkten können sie stromsparend ohne Hintergrundbeleuchtung betrieben werden und erlauben zudem einen großen seitlichen Betrachtungswinkel. Ihre Herstellungskosten könnten gegenüber LCD deutlich sinken.

Bei einem Feld-Emissions-Display wird jedes aufleuchtende Farbpixel des Monitors von einem separaten Elektronenstrahl angeregt. Im Spannungsfeld zwischen einer rückseitigen Kathodenplatte und der leuchtenden Frontplatte, an der sich die Anode befindet, entsteht ein Flächenschauer von Elektronenstrahlen. Um die Megapixel der Flachbildschirme einzeln anzusprechen, verwendet man wie bei den LCD ein feines Gitternetz aus gekreuzten elektrischen Leitungsbahnen. Spannungsspitzen an den Kreuzungspunkten des Gitters sind Triggersignale der Leuchtpunkte.

Eine technologische Herausforderung bei Feld-Emissions-Displays ist die Mikrostrukturierung einer geeigneten Kathodenplatte. In einem Areal aus isolierendem Material müssen sich elektrisch aktive Zonen befinden, die fein genug verteilt sind, um das Farbmuster des Bildschirms pixelgenau anzusprechen. Mikroskopisch kleine Entladungsspitzen, die durch Prägemasken lithographisch abgeformt werden, sind hierfür in der Erprobung. Eine weniger aufwendige Alternative könnten nanometerfeine Leitungskanäle sein, die vom atomaren Teilchenschauer einer Beschleunigeranlage erzeugt werden.

Als Ausgangsmaterial hierfür eignet sich eine Kohlenstoffstruktur, die in ihrer atomaren Anordnung dem Diamant ähnelt. Schichten dieses Materials lassen sich heute großflächig durch Abscheideverfahren herstellen. Bei einer Bestrahlung mit energiereichen Ionen entstehen in der nicht-leitenden Matrix graphitische Nanoröhrchen, die feine Leitungskanäle bilden. Die Methode nutzt damit das Phänomen, dass Kohlenstoff je nach seiner atomaren Struktur sowohl ein elektrischer Isolator (Diamant) wie ein elektrischer Leiter (Graphit) sein kann. Die Umwandlung der diamantähnlichen Struktur entlang der Ionenspur geschieht durch ein "Aufschmelzen" aufgrund der hohen Energieübertragung und einer anschließenden Erstarrung in einer graphitischen Struktur.

Der Vorteil dieses Verfahrens gegenüber einer lithographisch erzeugten Kathodenschicht liegt in der einfacheren Herstellung und der höheren Lebensdauer der stromleitenden Stellen. Die Preisträger des Hahn-Meitner-Technologie-Transfer-Preises 2000, Prof. Dr. Alois Weidinger, Dr. Johann Krauser, Dr. Wolfgang Harneit, Markus Waiblinger und Bernd Mertesacker, wollen jetzt in Zusammenarbeit mit der Industrie die Voraussetzungen einer großtechnischen Fertigung klären.

Die insgesamt zwölf Beiträge des Wettbewerbs um den Hahn-Meitner-Technologie-Transfer-Preis 2000 erstrecken sich im wesentlichen über das gesamte Forschungsspektrum des Hahn-Meitner-Instituts und betreffen Ergebnisse von der Solarenergieforschung (Photovoltaik und Brennstoffzellenforschung) bis zur grundlagenorientierten Strukturforschung mit dem Schwerpunkt Neutronenoptik.

Das könnte Sie auch interessieren

  • RBB Abendschau zu Besuch bei CatLab
    Nachricht
    01.08.2022
    RBB Abendschau zu Besuch bei CatLab
    CatLab bekam Besuch von der rbb Abendschau.
    Unter dem Titel "Der Weg weg vom Erdgas" wurde der Beitrag am Sonntag, 31. Juli in de rbb Abendschau ausgestrahlt und wird für 7 Tage in die rbb-Mediathek verfügbar.
  • Michelle Browne baut neue Nachwuchsgruppe zur Elektrokatalyse am HZB auf
    Nachricht
    01.08.2022
    Michelle Browne baut neue Nachwuchsgruppe zur Elektrokatalyse am HZB auf
    Dr. Michelle Browne baut ab August am HZB ihre eigene Nachwuchsgruppe auf, die von der Helmholtz-Gemeinschaft für die kommenden fünf Jahre mitfinanziert wird. Die Elektrochemikerin aus Irland forscht an elektrolytisch aktiven neuartigen Materialsystemen und will Elektrokatalyseure der nächsten Generation entwickeln, zum Beispiel für die Wasserstoffproduktion. Damit findet sie am HZB eine passende Umgebung für ihr Forschungsthema.
  • Mit der dritthöchsten Oxidationsstufe springt Rhodium aufs Siegertreppchen
    Science Highlight
    14.07.2022
    Mit der dritthöchsten Oxidationsstufe springt Rhodium aufs Siegertreppchen
    Oxidationsstufen von Übergangsmetallen beschreiben, wie viele Elektronen eines Elements bereits an Bindungen beteiligt sind und wie viele noch für weitere Reaktionen zur Verfügung stehen. Teams aus Berlin und Freiburg haben nun die höchste Oxidationsstufe von Rhodium entdeckt. Dies deutet darauf hin, dass Rhodium mehr Valenzelektronen in chemische Bindungen einbringen kann, als bisher angenommen. Diese Erkenntnis könnte für das Verständnis von katalytischen Reaktionen mit Beteiligung von Rhodium von Bedeutung sein. Das Ergebnis wurde von der Zeitschrift Angewandte Chemie als "Very Important Paper" eingestuft.