Neutronen verraten Wasserstoff in Eiweißen

Mit immer aufwendigeren Methoden wollen Forscher die feinsten Strukturen auch der lebenden Materie erkunden. So nutzen sie Synchrotronstrahlung und Neutronen, um die atomare Architektur von Proteinen zu enträtseln. Proteine (Eiweiße) sind organische Riesenmoleküle, die aus kompliziert gebauten und phantasievoll gefalteten Ketten Tausender Atome bestehen. Von der Aufklärung ihrer Strukturen auf atomarer Ebene versprechen sich die Wissenschaftler ein tieferes Verständnis der Funktion der an nahezu allen Lebensvorgängen beteiligten Proteine.

Damit will die biologische Strukturforschung auch Beiträge zur Entwicklung neuer organischer Werkstoffe, wirksamer Medikamente und zur Therapie von heute noch unheilbaren Krankheiten leisten.

Um sogar die Aufenthaltsorte einzelner Wasserstoffatome in den Proteinen bestimmen zu können, müssen Biologen, Chemiker und Physiker Bruchteile eines Millionstel Millimeters messen können. Eine besondere Methode dafür ist die sogenannte Protein-Kristallographie mit Neutronen. Dieser Technik widmet das Berliner Hahn-Meitner-Institut (HMI) in Kooperation mit dem Berliner Zentrum für Neutronenstreuung (BENSC) und dem Max-Delbrück-Zentrum für Molekularmedizin (MDC) am 25. und 26. Februar in Berlin einen Workshop. An dem Treffen sind Experten aus Frankreich, England, Deutschland, Japan und den USA beteiligt. Sie wollen neue Ergebnisse vorstellen und technische Fragen diskutieren.

Wegen des großen Aufwands wird die Protein-Kristallographie mit Neutronen bislang nur in Tokai-Mura (Japan), Grenoble (Frankreich), Los Alamos (USA), Didcot (England) und in Deutschland am Berliner Hahn-Meitner-Institut (HMI) genutzt. Große Hoffnung setzen die Wissenschaftler dabei in neuartige Neutronenlieferanten wie der geplanten Europäischen Spallationsquelle ESS. An ihrer Konzeption sind auch Forscher aus dem HMI beteiligt. In Berlin steht ihnen und Gastwissenschaftlern derzeit mit dem Forschungsreaktor BER II eine leistungsfähige konventionelle Neutronenquelle zur Verfügung.

Neutronen können viele Stoffe gut durchdringen. Als elektrisch neutrale atomare Teilchen werden sie dabei nur leicht gestreut. Bei kristallinem Material führt die Streuung zu charakteristischen Intensitätsmustern, die von Detektoren registriert werden. Nach Auswertung der Daten können die Forscher daraus die genaue Anordnung der Atome im Kristall ermitteln. In einer biologischen Substanz sind Neutronen gegenüber Wasserstoff besonders empfindlich. Für die Untersuchung dieser Substanzen ist daher die Neutronen-Methode besonders geeignet. Zudem werden die kostbaren Proben im Vergleich zur Untersuchung mit energiereicher Synchrotonstrahlung besser geschont. Wie für jede kristallographische Methode müssen die Eiweiße allerdings auch bei der Neutronen-Methode vor der Analyse nach speziellen Verfahren in ihre kristalline Form verwandelt werden.

25. und 26. Februar 2000,
Humboldt-Universität, Institut für Biologie,
Chausseestr. 117
10115 Berlin

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.