Neutronen verraten Wasserstoff in Eiweißen

Mit immer aufwendigeren Methoden wollen Forscher die feinsten Strukturen auch der lebenden Materie erkunden. So nutzen sie Synchrotronstrahlung und Neutronen, um die atomare Architektur von Proteinen zu enträtseln. Proteine (Eiweiße) sind organische Riesenmoleküle, die aus kompliziert gebauten und phantasievoll gefalteten Ketten Tausender Atome bestehen. Von der Aufklärung ihrer Strukturen auf atomarer Ebene versprechen sich die Wissenschaftler ein tieferes Verständnis der Funktion der an nahezu allen Lebensvorgängen beteiligten Proteine.

Damit will die biologische Strukturforschung auch Beiträge zur Entwicklung neuer organischer Werkstoffe, wirksamer Medikamente und zur Therapie von heute noch unheilbaren Krankheiten leisten.

Um sogar die Aufenthaltsorte einzelner Wasserstoffatome in den Proteinen bestimmen zu können, müssen Biologen, Chemiker und Physiker Bruchteile eines Millionstel Millimeters messen können. Eine besondere Methode dafür ist die sogenannte Protein-Kristallographie mit Neutronen. Dieser Technik widmet das Berliner Hahn-Meitner-Institut (HMI) in Kooperation mit dem Berliner Zentrum für Neutronenstreuung (BENSC) und dem Max-Delbrück-Zentrum für Molekularmedizin (MDC) am 25. und 26. Februar in Berlin einen Workshop. An dem Treffen sind Experten aus Frankreich, England, Deutschland, Japan und den USA beteiligt. Sie wollen neue Ergebnisse vorstellen und technische Fragen diskutieren.

Wegen des großen Aufwands wird die Protein-Kristallographie mit Neutronen bislang nur in Tokai-Mura (Japan), Grenoble (Frankreich), Los Alamos (USA), Didcot (England) und in Deutschland am Berliner Hahn-Meitner-Institut (HMI) genutzt. Große Hoffnung setzen die Wissenschaftler dabei in neuartige Neutronenlieferanten wie der geplanten Europäischen Spallationsquelle ESS. An ihrer Konzeption sind auch Forscher aus dem HMI beteiligt. In Berlin steht ihnen und Gastwissenschaftlern derzeit mit dem Forschungsreaktor BER II eine leistungsfähige konventionelle Neutronenquelle zur Verfügung.

Neutronen können viele Stoffe gut durchdringen. Als elektrisch neutrale atomare Teilchen werden sie dabei nur leicht gestreut. Bei kristallinem Material führt die Streuung zu charakteristischen Intensitätsmustern, die von Detektoren registriert werden. Nach Auswertung der Daten können die Forscher daraus die genaue Anordnung der Atome im Kristall ermitteln. In einer biologischen Substanz sind Neutronen gegenüber Wasserstoff besonders empfindlich. Für die Untersuchung dieser Substanzen ist daher die Neutronen-Methode besonders geeignet. Zudem werden die kostbaren Proben im Vergleich zur Untersuchung mit energiereicher Synchrotonstrahlung besser geschont. Wie für jede kristallographische Methode müssen die Eiweiße allerdings auch bei der Neutronen-Methode vor der Analyse nach speziellen Verfahren in ihre kristalline Form verwandelt werden.

25. und 26. Februar 2000,
Humboldt-Universität, Institut für Biologie,
Chausseestr. 117
10115 Berlin

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Nachricht
    04.09.2024
    SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Bevor Lebensmittel verderben bilden sich meist bestimmte reaktionsfreudige Moleküle, sogenannte freie Radikale. Bisher war der Nachweis dieser Moleküle für Lebensmittelunternehmen sehr kostspielig. Ein Team aus HZB und Universität Stuttgart hat nun einen tragbaren und kostengünstigen „EPR-on-a-Chip“-Sensor entwickelt, der freie Radikale auch in geringsten Konzentrationen nachweisen kann. Nun bereitet das Team die Gründung eines Spin-off-Unternehmens vor, gefördert durch das EXIST-Forschungstransferprogramm des Bundesministeriums für Wirtschaft und Klimaschutz. Der EPRoC-Sensor soll zunächst bei der Herstellung von Olivenöl und Bier eingesetzt werden, um die Qualität dieser Produkte zu sichern.
  • Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Science Highlight
    03.09.2024
    Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Ein Team aus führenden Expertinnen und Experten aus Medizinphysik, Physik und Strahlentherapie, zu dem auch die HZB-Physikerin Prof. Andrea Denker und der Charité-Medizinphysiker Dr. Jens Heufelder gehören, hat einen Übersichtsartikel zur Protonentherapie von Augentumoren veröffentlicht. Der Beitrag ist im Red Journal, einem der renommiertesten Fachjournale in diesem Bereich erschienen. Er stellt die Besonderheiten dieser Therapieform am Auge vor, erläutert den Stand der Technik und aktuelle Forschungsschwerpunkte, gibt Empfehlungen zur Durchführung der Bestrahlungen und einen Ausblick auf künftige Entwicklungen.