Steigert Unordnung die Effizienz von Solarzellen?

Dünnschichtsolarzellen aus Chalkopyriten, so genannte CIS-Zellen (wie z.B. Kupfer-Indium-Sulfid und Kupfer-Indium-Selenid) weisen in der polykristallinen Form im Gegensatz zu Silizium-Zellen höhere Effizienzen auf als in der monokristallinen Form. Forscher des Hahn- Meitner-Instituts Berlin haben nun erstmals einen Nachweis geliefert, der dieses Phänomen erklären könnte.

Hindernisse für den Ladungstransport - Korngrenzen in Halbleiterkristallen

In polykristallinen Materialien bilden sich Korngrenzen, wenn zwei Kristalle aufeinander stoßen. Diese Korngrenzen sind Kristallstörungen und bilden elektrisch geladene Defekte. Sie sind für die Qualität der Bauelemente schädlich, da sie die Anzahl der vom Licht generierten Ladungsträger durch Rekombination reduzieren. Bei diesem Effekt treffen zwei Ladungsträger mit entgegengesetzten Vorzeichen aufeinander und "löschen sich aus". Rekombinierte Ladungsträger können nicht mehr zum elektrischen Strom beitragen. Außerdem stellen Korngrenzen eine Barriere für den Ladungstransport dar.

Vor kurzem wurden auch Korngrenzen theoretisch vorhergesagt, die keine elektrische Ladung, aber trotzdem eine Barriere aufweisen. "Wir haben speziell für den Nachweis dieser neutralen Korngrenzenbarriere Kristalle aufgewachsen und konnten an diesen nun erstmals überhaupt eine neutrale Korngrenzenbarriere nachweisen", erläutert Projektleiterin Dr. Susanne Siebentritt vom Hahn- Meitner-Institut Berlin. Was die Forscher erstaunt, ist der Umstand, dass diese neutralen Grenzen ein Hindernis für den Ladungstransport bilden: "Bisher gingen wir davon aus, dass nur geladenen Korngrenzen eine Barriere darstellen. Dass neutrale Grenzen ebenso ein Hindernis für den Ladungstransport darstellen, könnte weit reichende Konsequenzen haben", berichtet Dr. Sascha Sadewasser, Mitentdecker der neuen Struktur.

Die neutrale Korngrenzenbarriere könnte einer der Gründe sein, warum in Chalkopyriten unerwarteterweise polykristalline Solarzellen effizienter sind als einkristalline: An der Barriere wird wahrscheinlich die Rekombination unterdrückt. "Dieser erste Nachweis wird der Entwicklung von Dünnschichtsolarzellen aus Chalkopyriten wichtige Entwicklungsimpulse liefern", so Siebentritt weiter.

Mono- und polykristalline Halbleiter

Die meisten heutzutage eingesetzten Halbleiter, wie z.B. Computerchips, sind monokristallin, das heißt sie bilden ein einheitliches, homogenes Kristallgitter. Auch die effizientesten Solarzellen aus Silizium sind monokristallin. Im Gegensatz dazu bestehen polykristalline Schichten aus vielen kleinen Einzelkristallen, die durch die so genannten Korngrenzen voneinander getrennt werden. Polykristalline Schichten sind deutlich einfacher und kostengünstiger zu produzieren. Daher konzentriert sich die Entwicklung von preiswerten Solarzellen zunehmend auf polykristalline Materialien. Chalkopyrite stehen an der Schwel- le zur Massenproduktion, da sie neben der polykristallinen Struktur auch vielfach dünnere Schichten und so erhebliche Material- und Kostenersparnisse ermöglichen. "Für uns Forscher und auch für Produzenten von Solarzellen sind diese Materialien sehr interessant, da hier unter anderem die polykristallinen Zellen effizienter sind als die monokristallinen", schließt Siebentritt.

Die Ergebnisse der Berliner Forscher wurden als Titelbeitrag in der renommierten Fachzeitschrift "Physical Review Letters" Anfang Oktober 2006 präsentiert.

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.