Spot an – vor 10 Jahren ging die Synchrotronstrahlungsquelle BESSY II in Betrieb

Am 4. September 1998 nahmen der damalige Forschungsminister Jürgen Rüttgers, Berlins Regierender Bürgermeister Eberhard Diepgen und die beiden Geschäftsführer der BESSY GmbH, Eberhard Jaeschke und Wolfgang Gudat, die zu dem Zeitpunkt modernste Synchrotronstrahlungsquelle der Welt in Betrieb. .„BESSY II sollte ein Kristallisationskern für den neuen Wissenschaftsstandort Berlin-Adlershof werden“, erinnert sich Hermann Schunck, damals Mitglied im Aufsichtsrat bei BESSY, an die Planungsphase. Eine Strategie, die Erfolg zeigte.

Heute forschen am Elektronenspeicherring jährlich über 1300 Nutzer aus dem In- und Ausland an interdisziplinären Projekten aus Physik, Chemie, Biologie und Materialwissenschaften. Auf dem Campus Adlershof unterhält BESSY zahlreiche Kooperationen, die von der räumlichen Nähe profitieren. Die Physikalisch-Technische Bundesanstalt (PTB) und insgesamt vier Institute der Max-Planck-Gesellschaft haben bei BESSY eigene Experimentierplätze.

Die hohe Qualität der Strahlung, die bei BESSY II erzeugt wird, ermöglicht exzellente Experimentierbedingungen für die Spitzenforschung und industrielle Anwendungen. Entwickelt und geplant wurde die leistungsfähige Synchrotronstrahlungsquelle der dritten Generation als Nachfolger von BESSY I in Wilmersdorf, der ersten dedizierten Synchrotronstrahlungsquelle Deutschlands. Parallel zum Betrieb von BESSY I erfolgte 1993 der Baubeginn des neuen Rings in Adlershof.

Mit der Inbetriebnahme von BESSY II 1998 erweiterte sich auch das Spektrum der verfügbaren elektromagnetischen Strahlung. Der Energiebereich von BESSY II reicht von der Terahertz- bis zur harten Röntgenstrahlung. Dies eröffnete ein weites Feld an neuen Forschungsmöglichkeiten.

Mit der Erzeugung harter Röntgenstrahlung durch den Einbau supraleitender Magnetstrukturen waren nun Methoden verfügbar, die man vorher nur von anderen Synchrotronstrahlungsquellen kannte, beispielsweise Proteinkristallographie, Röntgentomographie, und Röntgenfluoreszenzanalyse. So können nun die Struktur von Proteinen und Werkstoffen bestimmt und zerstörungsfreie Materialanalysen (z.B. an Kunstobjekten) durchgeführt werden. Auch wird die Synchrotronstrahlung für die Fertigung mikrostrukturierter Bauteile genutzt.

Neue Akzente setzte BESSY II auch für den langwelligen Energiebereich: Begünstigt durch das besondere Design der „Maschine“, konnten die Wissenschaftler bei BESSY im Jahre 2003 als die Ersten weltweit kohärente Synchrotronstrahlung im Terahertz-Bereich erzeugen. Diese langwellige Strahlung bietet der Forschung an Hochtemperatur-Supraleitern und Dünnschicht-Solarzellen neue, unerwartete Perspektiven.

Die bei BESSY geleistete Weiterentwicklung der Synchrotrontechnologie zeitigt Ergebnisse, die auch international gefragt sind. So stammt das Design des kürzlich eingeweihten Niederenergiespeicherrings „Metrology Light Source“ (MLS) der PTB von Spezialisten von BESSY. BESSY und die PTB verbindet eine langjährige gute Zusammenarbeit.

Vor zehn Jahren wurde auch ein anderer Grundstein gelegt. BESSY und das Hahn-Meitner-Institut unterzeichneten einen Kooperationsvertrag über den Aufbau einer kompletten Institutsabteilung in Adlershof, um die Strahlung von BESSY II für die Solarenergieforschung zu nutzen. Aus der Kooperation wurde eine Fusion. Als neues „Helmholtz-Zentrum Berlin für Materialien und Energie“ wird man ab 2009 gemeinsam Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft leisten.

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.
  • Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    Science Highlight
    19.01.2026
    Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    So genannte Ewigkeitschemikalien oder PFAS-Verbindungen sind ein zunehmendes Umweltproblem. Ein innovativer Ansatz für die Aufbereitung von Wasser und Böden in PFAS-belasteten Gebieten kommt jetzt aus der Beschleunigerphysik: Hochenergetische Elektronen können PFAS-Moleküle durch Radiolyse in unschädliche Bestandteile zerlegen. Ein am HZB entwickelter Beschleuniger auf Basis eines SHF-Photoinjektors kann den dafür nötigen Elektronenstrahl liefern, zeigt nun eine Studie in PLOS One.