Themen: Kooperationen (136) BESSY II (263) Spintronik (92) HZB-Eigenforschung (92)

Science Highlight    21.08.2018

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

Der Laserpuls (rot) erzeugt Wärme im Dünnschichtsystem. Mit zeitaufgelösten Röntgendiffraktionsexperimenten lässt sich analysieren, wie sich die Wärme verteilt.
Copyright: HZB/Uni Potsdam

Die Wärme wird sowohl über die Elektronen als auch die Kristallgitter verteilt. Bis zum thermischen Gleichgewicht benötigt das System hundertmal länger als erwartet.
Copyright: Uni Potsdam

Ein Forscherteam aus dem Helmholtz-Zentrum Berlin (HZB) und der Universität Potsdam hat den Wärmetransport in einem Modellsystem aus nanometerdünnen metallischen und magnetischen Schichten untersucht. Ähnliche Systeme sind Kandidaten für künftige hocheffiziente Datenspeicher, die durch Laserpulse lokal erhitzt und neu beschrieben werden können (Heat-Assisted Magnetic Recording). Experimente mit kurzen Röntgenpulsen zeigten nun, dass sich in dem Modellsystem die Wärme hundertmal langsamer als erwartet verteilt. Die Ergebnisse sind in Nature Communications publiziert.

Alle Metalle leiten Wärme üblicherweise hervorragend: Durch die frei beweglichen Elektronen verteilt sich lokale Hitze fast blitzschnell. Deutlich langsamer leiten isolierende Materialien Wärme, die nicht über freie Elektronen verfügen, sondern allein auf Gitterschwingungen angewiesen sind. Nun hat ein Team um Prof. Dr. Matias Bargheer von der Universität Potsdam, der am HZB eine Gemeinsame Forschungsgruppe zu ultraschneller Dynamik leitet, den Wärmetransport in einem metallisch-magnetischen Modellsystem genau unter die Lupe genommen.

Gold auf Nickel

Das Modellsystem besteht aus einer nanometerdünnen ferromagnetischen Nickelschicht (12,4 nm), die auf einem Magnesiumoxid-Substrat aufgebracht wurde. Darüber wurde eine noch dünnere Schicht Gold (5,6 nm) abgeschieden. Mit einem ultrakurzen Laserpuls (50 Femtosekunden) brachten die Physiker lokal Wärme in das Modellsystem und ermittelten mit extrem kurzen Röntgenpulsen (200 Femtosekunden) zeitaufgelöst, wie sich die Wärme in den beiden Nanoschichten verteilte. Der erste Befund: Bis zum thermischen Gleichgewicht braucht das Modellsystem nicht wie erwartet etwa eine Pikosekunde sondern hundertmal so lange.

Wärmetransport untersucht

Die zeitaufgelösten Messungen zeigten, was genau geschieht: „Obwohl der Laser zunächst die Goldschicht trifft, bleibt das Kristallgitter des Goldes kühl. Fast 90 Prozent der Energie wird an die Nickel-Elektronen weitergeleitet und dort ins Kristallgitter eingebracht“, berichtet Bargheer. Weil das Elektronensystem im Nickel sehr viel stärker an die Gitterschwingungen koppelt als im Gold, nimmt das Nickel-Kristallgitter die Wärme von den Nickel-Elektronen auf. Das Nickel-Gitter ist jedoch ein schlechter Wärmeleiter und gibt kaum Energie an das Gold-Gitter ab. Dies gelingt nur über einen Umweg: Denn mit der Zeit nehmen Elektronen aus dem Gold Wärmeenergie aus dem Nickelkristallgitter auf und regen damit wiederum Gold-Gitterschwingungen an, bis das thermische Gleichgewicht erreicht ist.

„Wir haben mit diesem Versuchsaufbau zeigen können, dass es sich lohnt, solche Transportprozesse zeitaufgelöst zu analysieren. Deshalb freuen wir uns sehr, dass wir solche Versuche bald auch an der sehr viel mächtigeren Röntgenquelle BESSY II machen können, die demnächst zu BESSY-VSR ausgebaut wird und dann zeitgleich auch sehr kurze, intensive Röntgenpulse anbietet“, sagt Bargheer.

Ausblick: neue Datenspeicher

Künftige Datenspeicher, die auf dem so genannten wärmegestützten magnetischen Speichern (Heat-Assisted Magnetic Recording oder HAMR) basieren, können mit Laserpulsen lokal erhitzt und überschrieben werden. Mit einem vertieften Verständnis der Transportvorgänge könnten solche Systeme so entwickelt werden, dass sie mit minimaler Energie auskommen.

Die Experimente fanden an der Universität Potsdam statt, die Proben haben Partner an der Universität Regensburg hergestellt, außerdem waren an der Arbeit Gruppen der Université Lorraine, Nancy, Frankreich und vom Massachusetts Institute of Technology, Cambridge, USA beteiligt.

 

Zur Publikation in Nature communications (2018): Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond x-ray diffraction. J. Pudell, A. A. Maznev, M. Herzog, M. Kronseder, C. Back, G. Malinowski, A. von Reppert, & M. Bargheer.

DOI: 10.1038/s41467-018-05693-5

arö


           



Das könnte Sie auch interessieren
  • <p>Skizze einer Kohlenstoffstruktur mit Poren.</p>SCIENCE HIGHLIGHT      13.03.2019

    Röntgenanalyse von Kohlenstoff-Nanostrukturen hilft beim Materialdesign

    Nanostrukturen aus Kohlenstoff sind äußerst vielseitig: Sie können in Batterien und Superkondensatoren Ionen aufnehmen, Gase speichern oder Wasser entsalzen. Wie gut sie diese Aufgaben meistern, hängt von Größe und Form der Nanoporen ab. Über die Temperatur während der Synthese lassen sich die Nanoporen dabei stark verändern.  Bisher war es nur möglich, Form, Größe sowie die Verteilung der Nanoporen ungefähr abzuschätzen. Eine neue Studie zeigt nun, dass sich solche Informationen direkt und zuverlässig mit Hilfe der Kleinwinkel-Röntgenstreuung gewinnen lassen. Die Ergebnisse wurden in der Zeitschrift Carbon veröffentlicht. [...]


  • <p>Fassade mit integrierten CIGS-D&uuml;nnschicht-Solarmodulen am Institutsgeb&auml;ude des ZSW in Stuttgart.</p>NACHRICHT      28.02.2019

    CIGS-Dünnschicht-Photovoltaik ist eine Schlüsseltechnologie für die globale Energiewende

    Ein neues Whitepaper der Forschungsinstitute ZSW und HZB zeigt: CIGS-Dünnschicht-Solarzellen besitzen großes Potenzial für Klimaschutz und Wirtschaftswachstum. CIGS-Dünnschichtmodule bieten hohe Leistung zu geringen Kosten, und ihre Herstellung benötigt wenig Energie. Außerdem erlauben CIGS-Module auch ästhetisch anspruchsvolle Gestaltungen in Gebäuden und Fahrzeugen. Damit hat CIGS erhebliche Vorteile gegenüber anderen Technologien. Das neue Whitepaper beschreibt Stärken und Einsatzmöglichkeiten von CIGS und die daraus resultierenden großen Chancen auch für die Wirtschaft. [...]


  • <p>Mit R&ouml;ntgenlicht (blau) werden Wassermolek&uuml;le angeregt. Aus dem abgestrahlten Licht (lila) lassen sich Informationen &uuml;ber Wasserstoffbr&uuml;cken gewinnen.</p>SCIENCE HIGHLIGHT      20.02.2019

    Wasser ist homogener als gedacht

    Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1%  Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen. [...]




Newsletter