Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

Der Laserpuls (rot) erzeugt Wärme im Dünnschichtsystem. Mit zeitaufgelösten Röntgendiffraktionsexperimenten lässt sich analysieren, wie sich die Wärme verteilt.

Der Laserpuls (rot) erzeugt Wärme im Dünnschichtsystem. Mit zeitaufgelösten Röntgendiffraktionsexperimenten lässt sich analysieren, wie sich die Wärme verteilt. © HZB/Uni Potsdam

Die Wärme wird sowohl über die Elektronen als auch die Kristallgitter verteilt. Bis zum thermischen Gleichgewicht benötigt das System hundertmal länger als erwartet.

Die Wärme wird sowohl über die Elektronen als auch die Kristallgitter verteilt. Bis zum thermischen Gleichgewicht benötigt das System hundertmal länger als erwartet. © Uni Potsdam

Ein Forscherteam aus dem Helmholtz-Zentrum Berlin (HZB) und der Universität Potsdam hat den Wärmetransport in einem Modellsystem aus nanometerdünnen metallischen und magnetischen Schichten untersucht. Ähnliche Systeme sind Kandidaten für künftige hocheffiziente Datenspeicher, die durch Laserpulse lokal erhitzt und neu beschrieben werden können (Heat-Assisted Magnetic Recording). Experimente mit kurzen Röntgenpulsen zeigten nun, dass sich in dem Modellsystem die Wärme hundertmal langsamer als erwartet verteilt. Die Ergebnisse sind in Nature Communications publiziert.

Alle Metalle leiten Wärme üblicherweise hervorragend: Durch die frei beweglichen Elektronen verteilt sich lokale Hitze fast blitzschnell. Deutlich langsamer leiten isolierende Materialien Wärme, die nicht über freie Elektronen verfügen, sondern allein auf Gitterschwingungen angewiesen sind. Nun hat ein Team um Prof. Dr. Matias Bargheer von der Universität Potsdam, der am HZB eine Gemeinsame Forschungsgruppe zu ultraschneller Dynamik leitet, den Wärmetransport in einem metallisch-magnetischen Modellsystem genau unter die Lupe genommen.

Gold auf Nickel

Das Modellsystem besteht aus einer nanometerdünnen ferromagnetischen Nickelschicht (12,4 nm), die auf einem Magnesiumoxid-Substrat aufgebracht wurde. Darüber wurde eine noch dünnere Schicht Gold (5,6 nm) abgeschieden. Mit einem ultrakurzen Laserpuls (50 Femtosekunden) brachten die Physiker lokal Wärme in das Modellsystem und ermittelten mit extrem kurzen Röntgenpulsen (200 Femtosekunden) zeitaufgelöst, wie sich die Wärme in den beiden Nanoschichten verteilte. Der erste Befund: Bis zum thermischen Gleichgewicht braucht das Modellsystem nicht wie erwartet etwa eine Pikosekunde sondern hundertmal so lange.

Wärmetransport untersucht

Die zeitaufgelösten Messungen zeigten, was genau geschieht: „Obwohl der Laser zunächst die Goldschicht trifft, bleibt das Kristallgitter des Goldes kühl. Fast 90 Prozent der Energie wird an die Nickel-Elektronen weitergeleitet und dort ins Kristallgitter eingebracht“, berichtet Bargheer. Weil das Elektronensystem im Nickel sehr viel stärker an die Gitterschwingungen koppelt als im Gold, nimmt das Nickel-Kristallgitter die Wärme von den Nickel-Elektronen auf. Das Nickel-Gitter ist jedoch ein schlechter Wärmeleiter und gibt kaum Energie an das Gold-Gitter ab. Dies gelingt nur über einen Umweg: Denn mit der Zeit nehmen Elektronen aus dem Gold Wärmeenergie aus dem Nickelkristallgitter auf und regen damit wiederum Gold-Gitterschwingungen an, bis das thermische Gleichgewicht erreicht ist.

„Wir haben mit diesem Versuchsaufbau zeigen können, dass es sich lohnt, solche Transportprozesse zeitaufgelöst zu analysieren. Deshalb freuen wir uns sehr, dass wir solche Versuche bald auch an der sehr viel mächtigeren Röntgenquelle BESSY II machen können, die demnächst zu BESSY-VSR ausgebaut wird und dann zeitgleich auch sehr kurze, intensive Röntgenpulse anbietet“, sagt Bargheer.

Ausblick: neue Datenspeicher

Künftige Datenspeicher, die auf dem so genannten wärmegestützten magnetischen Speichern (Heat-Assisted Magnetic Recording oder HAMR) basieren, können mit Laserpulsen lokal erhitzt und überschrieben werden. Mit einem vertieften Verständnis der Transportvorgänge könnten solche Systeme so entwickelt werden, dass sie mit minimaler Energie auskommen.

Die Experimente fanden an der Universität Potsdam statt, die Proben haben Partner an der Universität Regensburg hergestellt, außerdem waren an der Arbeit Gruppen der Université Lorraine, Nancy, Frankreich und vom Massachusetts Institute of Technology, Cambridge, USA beteiligt.

 

Zur Publikation in Nature communications (2018): Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond x-ray diffraction. J. Pudell, A. A. Maznev, M. Herzog, M. Kronseder, C. Back, G. Malinowski, A. von Reppert, & M. Bargheer.

DOI: 10.1038/s41467-018-05693-5

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Nachricht
    04.09.2024
    SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Bevor Lebensmittel verderben bilden sich meist bestimmte reaktionsfreudige Moleküle, sogenannte freie Radikale. Bisher war der Nachweis dieser Moleküle für Lebensmittelunternehmen sehr kostspielig. Ein Team aus HZB und Universität Stuttgart hat nun einen tragbaren und kostengünstigen „EPR-on-a-Chip“-Sensor entwickelt, der freie Radikale auch in geringsten Konzentrationen nachweisen kann. Nun bereitet das Team die Gründung eines Spin-off-Unternehmens vor, gefördert durch das EXIST-Forschungstransferprogramm des Bundesministeriums für Wirtschaft und Klimaschutz. Der EPRoC-Sensor soll zunächst bei der Herstellung von Olivenöl und Bier eingesetzt werden, um die Qualität dieser Produkte zu sichern.
  • Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Science Highlight
    03.09.2024
    Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Ein Team aus führenden Expertinnen und Experten aus Medizinphysik, Physik und Strahlentherapie, zu dem auch die HZB-Physikerin Prof. Andrea Denker und der Charité-Medizinphysiker Dr. Jens Heufelder gehören, hat einen Übersichtsartikel zur Protonentherapie von Augentumoren veröffentlicht. Der Beitrag ist im Red Journal, einem der renommiertesten Fachjournale in diesem Bereich erschienen. Er stellt die Besonderheiten dieser Therapieform am Auge vor, erläutert den Stand der Technik und aktuelle Forschungsschwerpunkte, gibt Empfehlungen zur Durchführung der Bestrahlungen und einen Ausblick auf künftige Entwicklungen.