2.8 Mio Euro Funding for preparing perovskite solar cells for high volume manufacturing

View into the new HySPRINT laboratory at HZB, where perovskit solar cells can be produced and tested. Photo: HZB/M. Setzpfandt

View into the new HySPRINT laboratory at HZB, where perovskit solar cells can be produced and tested. Photo: HZB/M. Setzpfandt

HZB participates in a new consortium for Perovskite solar technology that is led by Oxford PV Germany GmbH. The consortium is funded by the German Ministry of Economics and Energy with 2.8 Million Euros and aims to further demonstrate the manufacturability of perovskite-silicon tandem solar cells.

Further partners are Von Ardenne GmbH, Fraunhofer-Institute for Solar Energy Systems ISE, and the Technical University of Berlin. The project will focus on preparing perovskite solar cell technology for high volume manufacturing. This will include the optimisation of the perovskite-silicon tandem solar cell architecture, to make further efficiency improvements on industrial 156 mm x 156 mm wafer formats; the refinement of industrial scale process technology; and life-cycle analysis to inform the social-environmental impact of the tandem solar cells.

"Perovskite-based tandem solar cells are very promising to achieve really high efficiencies. In order to contribute to this exciting development we have built up strong competences in perovskites and tandem cell technology such as the Helmholtz Innovation Lab HySPRINT", says Prof. Dr. Rutger Schlatmann, Director of the Competence Center Thin Film and Nanotechnology for Photovoltaics Berlin (PVcomB) at HZB. "To the consortium with Oxford PV, we contribute our vast expertise in high-efficiency silicon heterojunction bottom cells", adds Dr. Bernd Stannowski who is leading these activities at the PVcomB.

Dr. Chris Case, Chief Technology Officer at Oxford PV says “The consortium partners bring together the perfect balance of expertise. Refining the manufacturing process of our perovskite solar cell technology will ensure the highest performing tandem solar cell in the field and the easy transfer of our technology into silicon solar cell and module production lines.”

 In June 2018, HZB and Oxford achieved an independently certified efficiency of 25.2 % for their perovskite silicon tandem solar cell. “In our cooperation, we aim to further optimize perovskite silicon tandem cells, demonstrate their scalability and facilitate their integration into large-area solar modules”, says Rutger Schlatmann.

Further Information:

Press Release Oxford PV

(sz/Oxford PV)


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • Cooperation with the Korea Institute of Energy Research
    News
    23.04.2024
    Cooperation with the Korea Institute of Energy Research
    On Friday, 19 April 2024, the Scientific Director of Helmholtz-Zentrum Berlin, Bernd Rech, and the President of the Korea Institute of Energy Research (KIER), Yi Chang-Keun, signed a Memorandum of Understanding (MOU) in Daejeon (South Korea).
  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.