Hanwha-Q-Cells-Quantsol-Preise 2018

Preisträger des HQCQ 2018-Awards (von links: Alejandra Villanueva Tovar, Pavlo Perkhun, Erin Looney, Tom Veeken, Gizem Birant, Harald Reinhold).

Preisträger des HQCQ 2018-Awards (von links: Alejandra Villanueva Tovar, Pavlo Perkhun, Erin Looney, Tom Veeken, Gizem Birant, Harald Reinhold). © HZB

Sechs Nachwuchsforscherinnen und –forscher erhielten für ihre Photovoltaik-Lösungen einen Hanwha-Q-Cells-Quantsol-Preis. Dieser Award wird von den Organisatoren der internationalen Sommerschule Quantsol gemeinsam mit der Industrie vergeben.

Die “International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion” (Quantsol) fand vom 2. bis 9. September 2018 zum elften Mal in Folge im österreichischen Hirschegg / Kleinwalsertal statt. Über 50 angehende Solarforscherinnen und -forscher aus 20 Ländern erhielten hier eine umfassende Einführung in Photovoltaik und solare Brennstofferzeugung. Experten von führenden Forschungsinstituten aus aller Welt stellten die grundlegenden Vorgänge zur Umwandlung von Solarenergie in chemische und elektrische Energien vor und zeigten Wege zu deren technischen Anwendung. Ausführlich diskutiert wurden auch neuere Materialien wie die vielversprechenden Perowskite oder Oxide für Wasserspaltung.

Wie im vergangen Jahr wurde der gemeinsam mit der Industrie ausgelobte Hanwha-Q-Cells-Quantsol-Preis (QHQC-Award 2018) in vier Kategorien vergeben. In den Teamkategorien gewonnen haben für die beste selbst gebaute Solarzelle Gizem Birant (Universität Hasselt, Belgien) und Alejandra Villanueva Tovar (HZB) und für die beste optische Simulation einer Perowskit-Silizium-Tandemsolarzelle Pavlo Perkhun (CINaM ‐ Centre Interdisciplinaire de Nanoscience de Marseille, Fr) sowie Harald Reinhold (Carl von Ossietzky Universität Oldenburg). In der Einzelkategorie ging der Preis für die aktivste Teilnahme an Erin Looney (MIT, USA) sowie an Tom Veeken (AMOLF, NL) für den mit dem Epi-Simulator produzierten besten Einkristall.

„Wir danken auch allen Helferinnen und Helfer aus dem HZB und der TU Ilmenau sowie beiden Forschungseinrichtungen, ohne die es nicht möglich gewesen wäre, eine qualitativ so hochwertige Schule zu organisieren und durchzuführen“, so Prof. Dr. Klaus Lips, der die Konferenz gemeinsam mit Prof. Dr. Thomas Hannappel, TU Ilmenau, seit nun schon elf Jahren organisiert. Aufgrund der großen Nachfrage sind für September 2019 und 2020 die nächsten Quantsol-Sommerschulen geplant.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.