Keywords: BESSY II (263) quantum materials (27) HZB own research (91)

Science Highlight    10.11.2018

Graphene on the way to superconductivity

The data show that In the case of the two-layer graphene, a flat part of bandstructure only 200 milli-electron volts below the Fermi energy.
Copyright: HZB

Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance. They probed the bandstructure at BESSY II with extremely high resolution ARPES and could identify a flat area at a surprising location.

Carbon atoms have diverse possibilities to form bonds. Pure carbon can therefore occur in many forms, as diamond, graphite, as nanotubes, football molecules or as a honeycomb-net with hexagonal meshes, graphene. This exotic, strictly two-dimensional material conducts electricity excellently, but is not a superconductor. But perhaps this can be changed.

A complicated option for superconductivity

In April 2018, a group at MIT, USA, showed that it is possible to generate a form of superconductivity in a system of two layers of graphene under very specific conditions: To do this, the two hexagonal nets must be twisted against each other by exactly the magic angle of 1.1°. Under this condition a flat band forms in the electronic structure. The preparation of samples from two layers of graphene with such an exactly adjusted twist is complex, and not suitable for mass production. Nevertheless, the study has attracted a lot of attention among experts.

The simple way to flat bands

But there is one more, much simpler way of flat band formation. This was shown by a group at the HZB around Prof. Oliver Rader and Dr. Andrei Varykhalov with investigations at BESSY II. The samples were provided by Prof. Thomas Seyller, TU Chemnitz. There they are produced using a process that is also suitable for the production of larger areas and in large quantities: A silicon carbide crystal is heated until silicon atoms evaporate from the surface, leaving first a single-layer of graphene on the surface, and then a second layer of graphene. The two graphene layers are not twisted against each other, but lie exactly on top of each other.

Scanning the band structure with ARPES

At BESSY II, the physicists are able to scan the so-called band structure of the sample. This band structure provides information on how the charge carriers are distributed among the quantum-mechanically permitted states and which charge carriers are available for transport at all. The angle-resolved photoemission spectroscopy (ARPES) at BESSY II enables such measurements with extremely high resolution.

An interesting region under scrutiny

Via an exact analysis of the band structure, they identified an area that had previously been overlooked. "The double layer of graphene has been studied before because it is a semiconductor with a band gap," explains Varykhalov. "But on the ARPES instrument at BESSY II, the resolution is high enough to recognize the flat area next to this band gap.”

"It is an overseen property of a well-studied system”, first author Dr. Dmitry Marchenko points out: “It was previously unknown that there is a flat area in the band structure in such a simple well-known system."

Superconductivity? Needs still a little help

This flat area is a prerequisite for superconductivity but only if it is situated exactly at the so-called Fermi energy. In the case of the two-layer graphene, its energy level is only 200 milli-electron volts below the Fermi energy, but it is possible to raise the energy level of the flat area to the Fermi energy either by doping with foreign atoms or by applying an external voltage, the so-called gate voltage.  

The physicists have found that the interactions between the two graphene layers and between graphene and the silicon carbide lattice are jointly responsible for the formation of the flat band area. "We can predict this behavior with very few parameters and could use this mechanism to control the band structure," adds Oliver Rader. 

Published in Science Advances (2018): Extremely Flat Band in Bilayer Graphene; D. Marchenko, D. V. Evtushinsky, E. Golias, A. Varykhalov, Th. Seyller and O. Rader

DOI: 10.1126/sciadv.aau0059

 

 

arö


           



You might also be interested in
  • <p>Water molecules are excited with X-ray light (blue). From the emitted light (purple) information on H-bonds can be obtained.</p>SCIENCE HIGHLIGHT      20.02.2019

    Water is more homogeneous than expected

    In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases even under ambient conditions. However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss Light Source show that this is not the case. At room temperature and normal pressure, the water molecules form a fluctuating network with an average of 1.74 ± 2.1% donor and acceptor hydrogen bridge bonds per molecule each, allowing tetrahedral coordination between close neighbours. [...]


  • <p>More than 250 invited guests celebrated the tenth anniversary of HZB on 18 February at the TIPI at the Chancellery.</p>NEWS      18.02.2019

    10 Years of Helmholtz-Zentrum Berlin: A strong partner in the scientific landscape

    Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) is celebrating its tenth anniversary on 18 February 2019 with around 250 invited guests from science, politics and industry. The Centre is one of the world's top institutions and makes a decisive contribution to Berlin as a location for cutting-edge research. This was emphasized by Michael Müller, Governing Mayor of Berlin, in reference to the anniversary. [...]


  • <p>The cones represents the magnetization of the nanoparticles. In the absence of electric field (strain-free state) the size and separation between particles leads to a random orientation of their magnetization, known as superparamagnetism</p>SCIENCE HIGHLIGHT      14.02.2019

    Spintronics by “straintronics”: Superferromagnetism with electric-field induced strain

    Data storage in today’s magnetic media is very energy consuming. Combination of novel materials and the coupling between their properties could reduce the energy needed to control magnetic memories thus contributing to a smaller carbon footprint of the IT sector. Now an international team led by HZB has observed at the HZB lightsource BESSY II a new phenomenon in iron nanograins: whereas normally the magnetic moments of the iron grains are disordered with respect each other at room temperature, this can be changed by applying an electric field: This field induces locally a strain on the system leading to the formation of a so-called superferromagnetic ordered state. [...]




Newsletter