Neue Rekorde bei Perowskit-Silizium-Tandemsolarzellen durch verbesserten Lichteinfang

</p> <p>Die REM-Aufnahme zeigt den Querschnitt durch eine Silizium-Perowskit-Tandemsolarzelle.

Die REM-Aufnahme zeigt den Querschnitt durch eine Silizium-Perowskit-Tandemsolarzelle. © HZB

Oberhalb der Perowskit-Schicht sorgt eine strukturierte Polymer-Folie f&uuml;r besseren Lichteinfang.

Oberhalb der Perowskit-Schicht sorgt eine strukturierte Polymer-Folie für besseren Lichteinfang. © HZB

Durch mikrostrukturierte Schichten konnte ein HZB-Team den Wirkungsgrad von Perowskit-Silizium-Tandemsolarzellen auf aktuell 25,5 Prozent steigern, dem höchsten Wert, der bis jetzt publiziert werden konnte. Gleichzeitig gelang es mit Hilfe von rechnerischen Simulationen, die Lichtumwandlung in verschiedenen Zelldesigns zu untersuchen. Diese Modellierungen ermöglichen die Optimierung des Lichtmanagements sowie detaillierte Ertragsanalysen. Die Studie wurde nun in Energy & Environmental Science publiziert.

Tandemsolarzellen aus Silizium und Metall-Halid Perowskit-Verbindungen können einen besonders großen Anteil des Sonnenspektrums in elektrische Energie umwandeln. Allerdings wird normalerweise ein Teil des Lichts reflektiert und geht damit für die Energieumwandlung verloren. Nanostrukturen können dafür sorgen, dass die Solarzelle mehr Licht „einfängt“. So werden zum Beispiel pyramidenförmige Strukturen in Silizium eingeätzt. Solche strukturierten und damit rauen Silizium-Schichten sind allerdings nicht mehr als Unterlage für die hauchdünnen Perowskit-Schichten geeignet. Denn Perowskite werden normalerweise aus einer Lösung zu einem hauchdünnen Film aufgeschleudert, der aber auf strukturierten Silizium-Schichten nicht wie gewünscht konform aufwachsen kann.

Wirkungsgrad von 23,4 % auf 25,5 % verbessert

Ein Team um den HZB-Physiker Dr. Steve Albrecht hat nun unterschiedliche Designs von Tandemzellen mit lichteinfangenden Strukturen untersucht. Am besten funktionierten Tandemzellen, deren Silizium-Schicht von unten strukturiert war. Die Perowskit-Schicht konnte damit auf die glatte Seite des Siliziums aufgeschleudert werden. Auf die Perowskit-Schicht brachten sie zusätzlich eine Polymer-Folie auf, die ebenfalls strukturiert war, eine so genannte Lichtmanagement-Folie (LM-Folie). „Auf diese Weise gelang es uns, den Wirkungsgrad einer monolithischen Perowskit-Silizium-Tandemzelle von 23,4 % auf 25,5 % deutlich zu verbessern“, sagt Dr.Marko Jošt, Erstautor der Studie und Postdoktorand im Team von Albrecht. Die Tandemzellen wurde komplett am HZB angefertigt, die Siliziumzelle stammt aus dem PVcomB und die Perowskitzelle aus dem HySPRINT-Labor.

Modellierung zeigt: bis zu 32,5 % könnten möglich sein

Darüber hinaus haben Jošt und Kollegen ein ausgefeiltes numerisches Modell für solche komplexen 3D-Schichtstrukturen und ihre Wechselwirkung mit Licht entwickelt. Damit konnten sie berechnen, wie sich unterschiedliche Zell-Designs mit Texturen an verschiedenen Schnittstellen auf den Wirkungsgrad auswirken. „Aufgrund der komplexen Simulationen und empirischen Daten  können wir abschätzen, dass sich sogar Wirkungsgrade von 32,5 Prozent erzielen lassen – sofern es uns gelingt, Perowskit mit einer Bandlücke von 1,66 eV einzubauen“, erklärt Jošt. 

Einsatz an Fassaden (BIPV)

Und Teamleiter Steve Albrecht erklärt: „Wir haben auf der Basis von echten Wetterdaten den Energieertrag im Jahresverlauf berechnen können, und zwar für die verschiedenen Zelldesigns und für drei verschiedene Standorte.“ Außerdem zeigen die Simulationen, dass die LM-Folie auf der Oberseite der Zelle sich vor allem bei diffuser Beleuchtung, also nicht nur bei senkrechtem Lichteinfall, lohnt. Damit könnten Tandemzellen mit eingebauten LM-Folien sich auch für den Einsatz an Fassaden eignen: Mit der so genannten bauwerksintegrierten Photovoltaik (BIPV) werden aktuell riesige neue Flächen für die Energiegewinnung erschlossen.

 

Publiziert in  Energy & Environmental Sciences (2018): “Textured interfaces in monolithic perovskite/silicon tandem solar cells: Advanced light management for improved efficiency and energy yield”¸ Marko Jošt, Eike Köhnen, Anna Morales Vilches, Benjamin Lipovšek, Klaus Jäger, Bart Macco,  Amran Al-Ashouri, Janez Krc,  Lars Korte, Bernd Rech, Rutger Schlatmann, Marko Topic, Bernd Stannowski and Steve Albrecht

DOI: 10.1039/C8EE02469C

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.