New records in perovskite-silicon tandem solar cells through improved light management

The SEM image shows the cross-section of a silicon perovskite tandem solar cell.

The SEM image shows the cross-section of a silicon perovskite tandem solar cell. © HZB

Above the perovskite layer, a structured polymer film provides better light capture.

Above the perovskite layer, a structured polymer film provides better light capture. © HZB

Using microstructured layers, an HZB team has been able to increase the efficiency of perovskite-silicon tandem solar cells, achieving 25.5 %, which is the highest published value to date. At the same time, computational simulations were utilized to investigate light conversion in various device designs with different nanostructured surfaces. This enabled optimization of light management and detailed energy yield analyses. The study has now been published in Energy & Environmental Science.

Tandem solar cells made of silicon and metal halide perovskite compounds can convert a particularly large portion of the solar spectrum into electrical energy. However, part of the light is reflected and is thus lost for purposes of energy conversion. Using nanostructures, the reflection can be reduced significantly ensuring that the solar cell captures more light. For example, pyramid-shaped microfeatures can be etched into silicon. However, these features cause microscopic roughness in the silicon surface, making it no longer suitable as a substrate for deposition of extremely thin perovskite layers. This is because perovskites are normally deposited to a polished wafer using solution processing to form an extremely thin film, much thinner than the pyramidal features. A rough-etched silicon surface layer therefore prevents formation of a uniform conformal layer.

Efficiency improved from 23,4 %  to 25.5 %

A team headed by HZB physicist Steve Albrecht has investigated an alternative approach of light management with textures in tandem solar cells. The team fabricated an efficient perovskite/silicon tandem device whose silicon layer was etched on the back-side. The perovskite layer could be applied by spincoating onto the smooth front-side of the silicon. The team afterwards applied a polymer light management (LM) foil to the front-side of the device. This enabled processing of a high-quality perovskite film on a flat surface, while still benefiting from the front-side texture. “In this way, we succeeded in considerably improving the efficiency of a monolithic perovskite-silicon heterojunction tandem cell from 23.4 % to 25.5 %”, says Marko Jošt, first author of the study and postdoctoral fellow in Albrecht's team. The tandem cells were manufactured at HZB, the silicon cell being produced at HZB-Institute PVcomB and the perovskite cell at HySPRINT.

Numerical model shows possibility for up to 32.5 %

In addition, Jošt and colleagues have developed a sophisticated numerical model for complex 3D features and their interaction with light. This enabled the team to calculate how different device designs with textures at various interfaces affect efficiency. “Based on these complex simulations and empirical data, we believe that an efficiency of 32.5 % can realistically be achieved – if we succeed to  incorporate high quality perovskites with a band gap of 1.66 eV”, says Jošt.

Suitable for building integrated PV

And team leader Steve Albrecht adds: “Based on real weather data, we were able to calculate the energy yield over the course of a year – for the different cell designs and for three different locations.” In addition, the simulations show that the LM foil on the front-side of the solar cell device is particularly advantageous under diffuse light irradiation, i.e. not only under perpendicularly incident light. Tandem solar cells with the new LM foil could therefore also be suitable for incorporation in building-integrated photovoltaics (BIPV), opening up huge new areas for energy generation from large sky scraper facades.

Published in  Energy & Environmental Sciences (2018): “Textured interfaces in monolithic perovskite/silicon tandem solar cells: Advanced light management for improved efficiency and energy yield”¸ Marko Jošt, Eike Köhnen, Anna Morales Vilches, Benjamin Lipovšek, Klaus Jäger, Bart Macco,  Amran Al-Ashouri, Janez Krc,  Lars Korte, Bernd Rech, Rutger Schlatmann, Marko Topic, Bernd Stannowski and Steve Albrecht

DOI: 10.1039/C8EE02469C

arö


You might also be interested in

  • Spintronics at BESSY II: Domain walls in magnetic nanowires
    Science Highlight
    02.06.2023
    Spintronics at BESSY II: Domain walls in magnetic nanowires
    Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.
  • Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen & Dienstleistungen
    Nachricht
    26.05.2023
    Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen & Dienstleistungen
    Im Rahmen der The smarter-e Europe/Intersolar 2023 findet eine Vortragssession organisiert von der Allianz BIPV und dem Solarenergieföderverein Bayern e.V. zum Thema "Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen und Dienstleistungen" statt.

    Datum: 14. Juni 2023, 15:30 -17:15 Uhr
    Ort: Messe München, Halle A3, Stand A3.150/151

  • Fractons as information storage: Not yet quite tangible, but close
    Science Highlight
    26.05.2023
    Fractons as information storage: Not yet quite tangible, but close
    A new quasiparticle with interesting properties has appeared in solid-state physics - but so far only in the theoretical modelling of solids with certain magnetic properties. An international team from HZB and Freie Universität Berlin has now shown that, contrary to expectations, quantum fluctuations do not make the quasiparticle appear more clearly, but rather blur its signature.