New records in perovskite-silicon tandem solar cells through improved light management

The SEM image shows the cross-section of a silicon perovskite tandem solar cell.

The SEM image shows the cross-section of a silicon perovskite tandem solar cell. © HZB

Above the perovskite layer, a structured polymer film provides better light capture.

Above the perovskite layer, a structured polymer film provides better light capture. © HZB

Using microstructured layers, an HZB team has been able to increase the efficiency of perovskite-silicon tandem solar cells, achieving 25.5 %, which is the highest published value to date. At the same time, computational simulations were utilized to investigate light conversion in various device designs with different nanostructured surfaces. This enabled optimization of light management and detailed energy yield analyses. The study has now been published in Energy & Environmental Science.

Tandem solar cells made of silicon and metal halide perovskite compounds can convert a particularly large portion of the solar spectrum into electrical energy. However, part of the light is reflected and is thus lost for purposes of energy conversion. Using nanostructures, the reflection can be reduced significantly ensuring that the solar cell captures more light. For example, pyramid-shaped microfeatures can be etched into silicon. However, these features cause microscopic roughness in the silicon surface, making it no longer suitable as a substrate for deposition of extremely thin perovskite layers. This is because perovskites are normally deposited to a polished wafer using solution processing to form an extremely thin film, much thinner than the pyramidal features. A rough-etched silicon surface layer therefore prevents formation of a uniform conformal layer.

Efficiency improved from 23,4 %  to 25.5 %

A team headed by HZB physicist Steve Albrecht has investigated an alternative approach of light management with textures in tandem solar cells. The team fabricated an efficient perovskite/silicon tandem device whose silicon layer was etched on the back-side. The perovskite layer could be applied by spincoating onto the smooth front-side of the silicon. The team afterwards applied a polymer light management (LM) foil to the front-side of the device. This enabled processing of a high-quality perovskite film on a flat surface, while still benefiting from the front-side texture. “In this way, we succeeded in considerably improving the efficiency of a monolithic perovskite-silicon heterojunction tandem cell from 23.4 % to 25.5 %”, says Marko Jošt, first author of the study and postdoctoral fellow in Albrecht's team. The tandem cells were manufactured at HZB, the silicon cell being produced at HZB-Institute PVcomB and the perovskite cell at HySPRINT.

Numerical model shows possibility for up to 32.5 %

In addition, Jošt and colleagues have developed a sophisticated numerical model for complex 3D features and their interaction with light. This enabled the team to calculate how different device designs with textures at various interfaces affect efficiency. “Based on these complex simulations and empirical data, we believe that an efficiency of 32.5 % can realistically be achieved – if we succeed to  incorporate high quality perovskites with a band gap of 1.66 eV”, says Jošt.

Suitable for building integrated PV

And team leader Steve Albrecht adds: “Based on real weather data, we were able to calculate the energy yield over the course of a year – for the different cell designs and for three different locations.” In addition, the simulations show that the LM foil on the front-side of the solar cell device is particularly advantageous under diffuse light irradiation, i.e. not only under perpendicularly incident light. Tandem solar cells with the new LM foil could therefore also be suitable for incorporation in building-integrated photovoltaics (BIPV), opening up huge new areas for energy generation from large sky scraper facades.

Published in  Energy & Environmental Sciences (2018): “Textured interfaces in monolithic perovskite/silicon tandem solar cells: Advanced light management for improved efficiency and energy yield”¸ Marko Jošt, Eike Köhnen, Anna Morales Vilches, Benjamin Lipovšek, Klaus Jäger, Bart Macco,  Amran Al-Ashouri, Janez Krc,  Lars Korte, Bernd Rech, Rutger Schlatmann, Marko Topic, Bernd Stannowski and Steve Albrecht

DOI: 10.1039/C8EE02469C

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • From waste to value: The right electrolytes can enhance glycerol oxidation
    Science Highlight
    01.07.2024
    From waste to value: The right electrolytes can enhance glycerol oxidation
    When biomass is converted into biodiesel, huge amounts of glycerol are produced as a by-product. So far, however, this by-product has been little utilised, even though it could be processed into more valuable chemicals through oxidation in photoelectrochemical reactors. The reason for this: low efficiency and selectivity. A team led by Dr Marco Favaro from the Institute for Solar Fuels at HZB has now investigated the influence of electrolytes on the efficiency of the glycerol oxidation reaction. The results can help to develop more efficient and environmentally friendly production processes.