Übergangsmetallkomplexe: Gemischt geht's besser

Die Illustration zeigt eine Verbindung, in deren Zentrum ein Eisen-Atom sitzt. Es ist von 4 CN-Gruppen und einem Bipyridin Molekül umgeben. Das höchste besetzte Eisenorbital ist als grün-rote Wolke dargestellt. Sobald eine Cyangruppe da ist, beobachtet man wie sich die äußeren Eisenorbitale delokalisieren, sodass auch um die Stickstoffatome Elektronen dicht vorhanden sind. Bild. T. Splettstößer/HZB

Die Illustration zeigt eine Verbindung, in deren Zentrum ein Eisen-Atom sitzt. Es ist von 4 CN-Gruppen und einem Bipyridin Molekül umgeben. Das höchste besetzte Eisenorbital ist als grün-rote Wolke dargestellt. Sobald eine Cyangruppe da ist, beobachtet man wie sich die äußeren Eisenorbitale delokalisieren, sodass auch um die Stickstoffatome Elektronen dicht vorhanden sind. Bild. T. Splettstößer/HZB © T. Splettstoesser/HZB

Ein Team hat an BESSY II untersucht, wie unterschiedliche Eisenkomplex-Verbindungen Energie aus eingestrahltem Licht verarbeiten. Dabei konnten sie zeigen, warum bestimmte Verbindungen das Potenzial haben, Licht in elektrische Energie umzuwandeln. Die Ergebnisse sind für die Entwicklung von organischen Solarzellen interessant. Die Studie wird auf dem Cover der Fachzeitschrift PCCP angekündigt.

Übergangsmetall-Komplexe – das ist ein sperriges Wort für eine Klasse von Molekülen mit interessanten Eigenschaften. Im Zentrum sitzt ein Element aus der Gruppe der Übergangsmetalle. Die äußeren Elektronen des Übergangsmetalls befinden sich auf keulenartig ausgedehnten d-Orbitalen, die sich durch äußere Anregung gut beeinflussen lassen. Manche Übergangsmetall-Komplexe beschleunigen als Katalysatoren bestimmte chemische Reaktionen, andere können sogar Sonnenlicht in Strom umwandeln: So basiert die bekannte Farbstoff-Solarzelle, die Michael Graetzel (EPFL) in den 1990er Jahren entwickelt hat, auf einem Ruthenium-Komplex.

Eisen statt Ruthenium

Allerdings ist es bisher nicht gelungen, das seltene und teure Übergangsmetall Ruthenium durch ein preiswerteres Element zu ersetzen, zum Beispiel durch Eisen. Das ist erstaunlich, denn auch beim Eisen befinden sich die gleiche Anzahl an Elektronen auf den äußeren weitausgedehnten d-Orbitalen. Die Anregung mit Licht im sichtbaren Bereich setzt jedoch in den meisten bisher untersuchten Eisen-Komplexverbindungen keine langlebigen Ladungsträger frei.

Inelastische Röntgenstreuung an BESSY II

Diese Frage hat nun ein Team an BESSY II genauer untersucht. Die Gruppe um Prof. Dr. Alexander Föhlisch hat dafür systematisch unterschiedliche Eisen-Komplexverbindungen in Lösung mit weichem Röntgenlicht bestrahlt. Dabei konnten sie messen, wieviel Energie dieses Lichts von den Molekülen absorbiert wurde (Methode der inelastischen Röntgenstreuung, RIXS). Sie untersuchten Komplexe, in denen das Eisenatom entweder von Bipyridin-Molekülen oder Cyan-Gruppen (CN) umgeben waren, sowie Mischformen, in denen das Eisenzentrum mit je einem Bipyridin und vier Cyan-Gruppen verbunden ist.

Ergebnis: Mit Mischformen könnte es klappen

Zwei Wochen lang wechselten sich die Teammitglieder im Schichtbetrieb ab, um die nötigen Messdaten zu erhalten. Die Messungen zeigten, dass die bisher kaum untersuchten Mischformen besonders interessant sind: Wenn Eisen nur von drei Bipyridin-Molekülen oder sechs Cyan-Gruppen (CN) umgeben ist, dann sorgt eine optische Anregung nur für eine kurzzeitige oder gar keine Freisetzung von Ladungsträgern. Anders wird es erst, wenn man zwei der Cyangruppen durch ein Bipyridin-Molekül ersetzt. „Dann sehen wir durch die Anregung mit weichem Röntgenlicht wie 3d-Orbitale vom Eisen delokalisieren und bei den Cyangruppen verortet werden können, während gleichzeitig das Bipyridin-Molekül den Ladungsträger aufnehmen kann“, erklärt Raphael Jay, Erstautor der Studie, der über das Thema promoviert.

Die Ergebnisse zeigen, dass sich auch preiswerte Übergangsmetallkomplexe für den Einsatz in Solarzellen eignen könnten – sofern man sie mit passenden Molekülgruppen umgibt. Hier gibt es also noch ein reiches Feld für die Materialentwicklung.

 

Publiziert in Physical Chemistry Chemical Physics (2018) als Cover story:

 "The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(II) complexes"; Raphael M. Jay, Sebastian Eckert, Mattis Fondell, Piter S. Miedema, Jesper Norell, Annette Pietzsch, Wilson Quevedo, Johannes Niskanen, Kristjan Kunnus and Alexander Föhlisch

DOI: 10.1039/c8cp04341h

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.