HZB baut Undulator für SESAME in Jordanien

Der APPLE II UE56 Doppelundulator erzeugt brillantes Licht mit variabler Polarisation.

Der APPLE II UE56 Doppelundulator erzeugt brillantes Licht mit variabler Polarisation. © HZB

Das Helmholtz-Zentrum Berlin baut einen APPLE II Undulator für die Synchrotron-Lichtquelle SESAME in Jordanien. Der Undulator wird an der Helmholtz- SESAME-Beamline (HESEB) eingesetzt, die von fünf Helmholtz-Zentren an SESAME aufgebaut wird. Die Helmholtz-Gemeinschaft investiert 3,5 Millionen Euro in das Projekt, das von DESY koordiniert wird.

SESAME steht für “Synchrotron-light for Experimental Science and Applications in the Middle East” und stellt brillantes Röntgenlicht für die Forschung zur Verfügung. Die Synchrotronstrahlungsquelle der dritten Generation wurde 2017 in Betrieb genommen. Ägypten, Iran, Israel, Jordanien, Pakistan, die palästinensischen Autonomiegebiete, die Türkei und Zypern kooperieren für dieses einzigartige Projekt, um Wissenschaftlerinnen und Wissenschaftlern aus dem Nahen Osten Zugang zu einem der vielseitigsten Werkzeuge der Forschung zu gewährleisten. Bisher gibt es vier Strahlrohre an SESAME.

Neue Beamline für weiches Röntgenlicht

Nun wird SESAME ein fünftes Strahlrohr erhalten. Es soll „weiches“ Röntgenlicht im Energiebereich zwischen 70 eV und 1800 eV erzeugen. Dieses Röntgenlicht eignet sich besonders dafür, Oberflächen und Grenzflächen von unterschiedlichen Materialien zu untersuchen, bestimmte chemische und elektronische Prozesse zu beobachten oder Kulturschätze zerstörungsfrei zu analysieren. Das neue Strahlrohr wird als Helmholtz-SESAME Beamline (HESEB) von den Helmholtz-Zentren DESY (Federführung), Forschungszentrum Jülich, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz-Zentrum Berlin (HZB) sowie Karlsruher Institut für Technologie (KIT) aufgebaut.

Der Undulator kommt vom HZB

Das Team um Dr. Johannes Bahrdt am HZB hat die Aufgabe übernommen, einen Undulator für das neue Strahlrohr zu konstruieren und in Betrieb zu nehmen. Undulatoren bestehen aus zwei sich gegenüberstehenden Anordnungen von Magneten, die die ultraschnellen Elektronenpakete zu einer wellenartigen Bewegung zwingen. Dabei geben die Elektronenpakete an jedem Umkehrpunkt der Welle Licht ab, das sich gegenseitig verstärkt, so dass ein laserartiger Strahl entsteht: das Synchrotronlicht. Johannes Bahrdt hat bereits mehrere Undulator-Typen entwickelt, darunter auch den APPLE II UE56-Undulator, der an BESSY II seit bald 20 Jahren sehr erfolgreich eingesetzt wird. Der APPLE II UE56 Doppelundulator erzeugt brillantes Licht mit variabler Polarisation, mit dem sich zum Beispiel magnetische Nanostrukturen untersuchen lassen. Für SESAME wird nun ein UE56-Modul komplett umgebaut, mit neuen Magneten versehen und auf den neuesten Stand der Technik gebracht. Dabei wird das Undulator-Team die Kollegen an SESAME ausbilden und später über eine Fernwartung unterstützen.

HZB und SESAME

Mit dem HZB verbindet SESAME eine lange Vorgeschichte: Denn im Herzen von SESAME stecken auch einige Beschleuniger-Komponenten aus BESSY I, der Vorgängerquelle von BESSY II, die 1998 abgebaut wurde. Die Helmholtz-Gemeinschaft fördert die Helmholtz-SESAME-Beamline mit insgesamt 3,5 Millionen Euro. Das Projekt startet Anfang 2019 und soll in vier Jahren abgeschlossen werden.

 

Das könnte Sie auch interessieren

  • Perowskit/Silizium-Tandemsolarzellen auf dem Weg vom Labor in die Produktion
    Science Highlight
    28.06.2022
    Perowskit/Silizium-Tandemsolarzellen auf dem Weg vom Labor in die Produktion
    KOALA/KOALA+ - Die am Helmholtz Zentrum Berlin (HZB) errichtete Clusteranlage ermöglicht Wafer mit Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen; ausreichend groß, um eine industrielle Produktion abzubilden. Diese weltweit einzigartige Anlage trägt dazu bei, neue industrienahe Prozesse, Materialien und Solarzellen zu entwickeln.
  • Atomare Verschiebungen in Hochentropie-Legierungen untersucht
    Science Highlight
    27.06.2022
    Atomare Verschiebungen in Hochentropie-Legierungen untersucht
    Hochentropie-Legierungen aus 3d-Metallen haben faszinierende Eigenschaften, die Anwendungen im Energiesektor in Aussicht stellen. Ein internationales Team hat nun lokale Verschiebungen auf atomarer Ebene in einer hochentropischen Cantor-Legierung aus Chrom, Mangan, Eisen, Kobalt und Nickel untersucht. Mit spektroskopischen Analysen an BESSY II und statistischen Simulationen konnten sie das Verständnis dieser Materialgruppe deutlich erweitern.
  • Stellvertretender Premierminister von Singapur besucht das HZB
    Nachricht
    21.06.2022
    Stellvertretender Premierminister von Singapur besucht das HZB
    Am Freitag, den 17. Juni, war eine Delegation aus Singapur zu Gast am HZB. Heng Swee Keat, stellvertretender Premierminister von Singapur, wurde vom Botschafter von Singapur in Berlin, Laurence Bay, sowie von Vertreter*innen aus Forschung und Wirtschaft begleitet.