Two new Helmholtz Young Investigator Groups will start in 2019

Starting in 2019, Helmholtz-Zentrum Berlin (HZB) will be establishing two new Helmholtz Young Investigator Groups and thereby strengthening its competencies in catalysis research. The Helmholtz Association will be funding each group with 150,000 euros annually over a period of five years, and HZB will be matching that sum with its own funds.

The group of Dr. Christopher Seiji Kley will be developing light-absorbing materials and catalysts for the sunlight-driven conversion of carbon dioxide and water into fuels. The Young Investigator Group will be introducing concepts inspired from biology as a way to increase the catalysts’ energy efficiency and to maximise the catalytic activity for longer-chain hydrocarbons. The planned start for the group is in March 2019.

Dr. Olga Kasian’s group will be researching what are the factors currently limiting the performance of catalysts in solar hydrogen production. To do so, they will be analysing the catalysts’ uppermost atomic layers and explaining the reaction mechanisms by directly detecting the intermediates and products. BESSY II offers the latest spectroscopic methods for studying the electronic changes in the materials in-operando. Olga Kasian’s Young Investigator Group will kick off in May 2019.

Two out of ten new Helmholtz Young Investigator Groups at HZB

In the recent selection process for heads of Young Investigator Groups, an interdisciplinary jury selected ten talents from a total of 23 applicants. HZB came out very successfully in the selection round: out of ten newly funded Helmholtz Young Investigator Groups, two are to be established at HZB in 2019.

About the “Helmholtz Young Investigators” programme

The research programme fosters highly qualified young researchers who completed their doctorate three to six years ago. The heads of the Young Investigator Groups receive support through a tailored training and mentoring programme and are assured long-term prospects at HZB. One aim of the programme is to strengthen the networking of Helmholtz centres and universities. The costs – 300,000 euros per year per group over five years – are covered half by the Helmholtz President’s Initiative and Networking Fund, and half by the Helmholtz centres.


You might also be interested in

  • Sodium-ion batteries: How doping works
    Science Highlight
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.
  • BESSY II: Molecular orbitals determine stability
    Science Highlight
    BESSY II: Molecular orbitals determine stability
    Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.
  • BESSY II: Local variations in the structure of High-Entropy Alloys
    Science Highlight
    BESSY II: Local variations in the structure of High-Entropy Alloys
    High-entropy alloys can withstand extreme heat and stress, making them suitable for a variety of specific applications. A new study at the X-ray synchrotron radiation source BESSY II has now provided deeper insights into the ordering processes and diffusion phenomena in these materials. The study involved teams from HZB, the Federal Institute for Materials Research and Testing, the University of Latvia and the University of Münster.