Milestone for bERLinPro: photocathodes with high quantum efficiency

Photocathode in superconducting photoinjector system.

Photocathode in superconducting photoinjector system. © J. Kühn/HZB

The superconducting photoinjector system (1): The photocathode (3) is excited by a green laser (2) and emits electrons (4) which are accelerated in the superconducting RF cavity.

The superconducting photoinjector system (1): The photocathode (3) is excited by a green laser (2) and emits electrons (4) which are accelerated in the superconducting RF cavity. © Britta Mießen

Photocathode after its production in the preparatory system.

Photocathode after its production in the preparatory system. © J. Kühn/HZB

A team at the HZB has improved the manufacturing process of photocathodes and can now provide photocathodes with high quantum efficiency for bERLinPro.

Teams from the accelerator physics and the SRF groups at HZB are developing a superconducting linear accelerator featuring energy recovery (Energy Recovery Linac) as part of the bERLinPro project. It accelerates an intense electron beam that can then be used for various applications – such as generating brilliant synchrotron radiation. After use, the electron bunches are directed back to the superconducting linear accelerator, where they release almost all their remaining energy. This energy is then available for accelerating new electron bunches.

Electron source: photocathode

A crucial component of the design is the electron source. Electrons are generated by illuminating a photocathode with a green laser beam. The quantum efficiency, as it is referred to, indicates how many electrons the photocathode material emits when illuminated at a certain laser wavelength and power. Bialkali antimonides exhibit particularly high quantum efficiency in the region of visible light. However, thin films of these materials are highly reactive and therefore very sensitive, so they only work at ultra-high vacuum.

Manufacturing process modified

A HZB team headed by Martin Schmeißer, Dr. Julius Kühn, Dr. Sonal Mistry, and Prof. Thorsten Kamps has now greatly improved the performance of the photocathode so it is ready for use with bERLinPro. They modified the manufacturing process for the photocathodes of cesium- potassium-antimonide on a molybdenum substrate. The new process delivers the desired high quantum efficiency and stability. Studies showed that the photocathodes do not degrade, even at low temperatures. This is a critical prerequisite for operation within a superconducting electron source, where the cathode must be operated at temperatures far below zero.

High quantum efficiency

The physicists were able to demonstrate this performance with detailed studies: Even after its transport via the photocathode transfer system and introduction into the photo injector of the SRF, the quantum efficiency of the photocathode was still about five times higher than necessary to achieve the maximum electron-beam current needed for bERLinPro.

Milestone for bERLinPro

 “An important milestone for bERLinPro has been reached. We now have the photocathodes available to generate the first electron beam from our SRF photoinjector at bERLinPro in 2019“, says Prof. Andreas Jankowiak, head of the HZB Institute for Accelerator Physics.

 

Published in Physical Review Accelerators and Beams (2018): "Addressing challenges related to the operation of Cs-K-Sb photocathodes in SRF photoinjectors"; M. A. H. Schmeisser, S. Mistry, H. Kirschner, S. Schubert, A. Jankowiak, T. Kamps, J. Kühn.

doi:10.1103/PhysRevAccelBeams.21.113401

 

 

arö

  • Copy link

You might also be interested in

  • Protons against cancer: New research beamline for innovative radiotherapies
    News
    27.11.2024
    Protons against cancer: New research beamline for innovative radiotherapies
    Together with the University of the Bundeswehr Munich, the HZB has set up a new beamline for preclinical research. It will enable experiments on biological samples on innovative radiation therapies with protons.
  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.