Towards the Climate Neutral City: Independent consulting office for integrating photovoltaics into buildings

New solutions are available to integrate PV into the building skin. One beautiful example is the Copenhagen International School.

New solutions are available to integrate PV into the building skin. One beautiful example is the Copenhagen International School. © Philippe Vollichard/EPFL/Kromatix by Swissinso

Dr. Björn Rau und Dr. Markus Sauerborn from the consulting office.

Dr. Björn Rau und Dr. Markus Sauerborn from the consulting office. © Silvia Zerbe/HZB

The Helmholtz-Zentrum Berlin is opening a national consulting office for integrating photovoltaics into buildings (BAIP) this spring. The consulting office will support building owners, architects, and municipal planners in activating building envelopes for power generation. The project is being funded by the Helmholtz Association over a period of four years as part of its knowledge transfer programme.

In order to achieve the climate targets, the building stock must be designed to be almost climate-neutral by 2050. That's ambitious, but feasible. In future, buildings must actively contribute to energy supply and energy storage. However, roof areas for conventional solar modules are only available to a limited extent, especially in cities, while other building surfaces have hardly been utilised to generate electricity to date. Power generation by means of building-integrated-photovoltaics can blend in with the design and construction of the building skin and roof area. It is decentralised and generates electricity where it is consumed. This technique will need to be widely applied in the coming years.

Independent service agency

“From our discussions with involved actors in the construction sector, we know that many architecture firms find it difficult to provide the necessary specialist knowledge”, explains Dr. Björn Rau, Deputy Director of the HZB PVcomB Institute and responsible for the project. So far, there has been no independent service agency that prepares, evaluates, and classifies current information in order to offer independent consultancy to architects, planners, building owners, investors, and urban developers. Product and financial independence are essential for acceptance of the service and also represent a unique feature. ”Until now, consulting services have only been provided by manufacturers and distributors of solar modules. They do not guarantee completeness and an entire overview”, says Dr. Markus Sauerborn, who is responsible for knowledge transfer at the HZB.

HZB-Expertise in Photovoltaics

"The HZB has been a leader in photovoltaic research for many years. With the BAIP consultancy service, we are also fulfilling a mission, namely to makes sure the knowledge gained from research contributes to society for its tangible benefit”, says Prof. Dr. Bernd Rech, Scientific Director of the HZB.

Competent and strong partners

As a project partner, the HZB has been able to involve important representatives from the fields of construction, planning, and sustainability, including the Federal Chamber of German Architects, the Berlin Chamber of Architects (Architektenkammer Berlin), the German Sustainable Building Council (DGNB), the Reiner Lemoine Institute, the HTW Berlin University of Applied Sciences as well as the Alliance for building-integrated photovoltaics (Alliance BIPV). These partners not only have a great deal of expertise, they also reach the relevant target groups.

Dialogue and training

The consulting office will be set up on the HZB Adlershof campus in the immediate vicinity of PV research and technology companies. However, consultations can also take place at client sites. The service office will promote dialogue between researchers, manufacturers, architects, and end customers. In addition to direct consultancy, the service office will also offer advanced training and workshops designed in close consultation with project partners to meet the needs of participants.

arö

  • Copy link

You might also be interested in

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    News
    04.09.2024
    SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.
  • Review on ocular particle therapy (OPT) by international experts
    Science Highlight
    03.09.2024
    Review on ocular particle therapy (OPT) by international experts
    A team of leading experts in medical physics, physics and radiotherapy, including HZB physicist Prof. Andrea Denker and Charité medical physicist Dr Jens Heufelder, has published a review article on ocular particle therapy. The article appeared in the Red Journal, one of the most prestigious journals in the field. It outlines the special features of this form of eye therapy, explains the state of the art and current research priorities, provides recommendations for the delivery of radiotherapy and gives an outlook on future developments.