Keywords: BESSY II (272) materials research (72) spintronics (93) HZB own research (104)

Science Highlight    14.02.2019

Spintronics by “straintronics”: Superferromagnetism with electric-field induced strain

The cones represents the magnetization of the nanoparticles. In the absence of electric field (strain-free state) the size and separation between particles leads to a random orientation of their magnetization, known as superparamagnetism
Copyright: HZB

When an electric field is applied, the strain induced on the BaTiO3 substrate is transferred to the nanoparticles forcing their realignment along a common direction, known as superferromagnetism.
Copyright: HZB

Data storage in today’s magnetic media is very energy consuming. Combination of novel materials and the coupling between their properties could reduce the energy needed to control magnetic memories thus contributing to a smaller carbon footprint of the IT sector. Now an international team led by HZB has observed at the HZB lightsource BESSY II a new phenomenon in iron nanograins: whereas normally the magnetic moments of the iron grains are disordered with respect each other at room temperature, this can be changed by applying an electric field: This field induces locally a strain on the system leading to the formation of a so-called superferromagnetic ordered state.

Switching magnetic domains in magnetic memories requires normally magnetic fields which are generated by electrical currents, hence requiring large amounts of electrical power. Now, teams from France, Spain and Germany have demonstrated the feasibility of another approach at the nanoscale: “We can induce magnetic order on a small region of our sample by employing a small electric field instead of using magnetic fields”, Dr. Sergio Valencia, HZB, points out.

Ferroelectric substrate with magnetic nanoparticles on top

The samples consist of a wedge-shaped polycrystalline iron thin film deposited on top of a BaTiO3 substrate. BaTiO3 is a well-known ferroelectric and ferroelastic material: An electric field is able to distort the BaTiO3 lattice and induce mechanical strain. Analysis by electron microscopy revealed that the iron film consists of tiny nanograins (diameter 2,5 nm). At its thin end, the iron film is less than 0,5 nm thick, allowing for “low dimensionality” of the nanograins. Given their small size, the magnetic moments of the iron nanograins are disordered with respect to each other, this state is known as superparamagnetism.

BESSY II: Mapping the magnetic order

At the X-PEEM-Beamline at BESSY II, the scientists analysed what happens with the magnetic order of this nanograins under a small electric field. “With X-PEEM we can map the magnetic order of the iron grains on a microscopic level and observe how their orientation changes while in-situ applying an electric field”, Dr. Ashima Arora explains, who did most of the experiments during her PhD Thesis. Their results show: the electrical field induced a strain on BaTiO3, this strain was transmitted to the iron nanograins on top of it and formerly superparamagnetic regions of the sample switched to a new state. In this new state the magnetic moments of the iron grains are all aligned along the same direction, i.e. a collective long-range ferromagnetic order known as superferromagnetism.

From spintronics to straintronics

The experiments were performed at a temperature slightly above room temperature. ”This lets us hope that the phenomenon can be used for the design of new composite materials (consisting of ferroelectric and magnetic nanoparticles) for low-power spin-based storage and logic architectures operating at ambient conditions”, Valencia says.

Controlling nanoscale magnetic bits in magnetic random access memory devices by electric field induced strain alone, is known also as straintronics. It could offer a new, scalable, fast and energy efficient alternative to nowadays magnetic memories.

Published in Physical Review Materials (2019): Switching on Superferromagnetism

Arora, L. C. Phillips, P. Nukala, M. Ben Hassine , A.A. Ünal, B. Dkhil, Ll. Balcells, O. Iglesias, A. Barthélémy, F. Kronast, M. Bibes, and S. Valencia

DOI: 10.1103/PhysRevMaterials.3.024403

 

arö


           



You might also be interested in
  • SCIENCE HIGHLIGHT      10.07.2019

    Oldest completely preserved lily discovered

    Already 115 million years ago, tropical flowering plants were apparently very diverse and showed all typical characteristics. This is the conclusion of an international team of researchers led by Clément Coiffard, Museum für Naturkunde Berlin. The team reported in the renowned journal Nature Plants on the oldest completely preserved lily, Cratolirion bognerianum, which was discovered at a site in present-day Brazil. With the help of 3D computer tomography at the Helmholtz-Zentrum Berlin, details on the back of the fossilised plant could also be analysed. The results raise new questions about the role of the tropics in the development of past and present ecosystems. [...]


  • <p>An X-ray pulse probes the delocalization of iron 3d electrons onto adjacent ligands.</p>SCIENCE HIGHLIGHT      09.07.2019

    Charge transfer within transition-metal dyes analysed

    Transition-metal complexes in dye-based solar cells are responsible for converting light into electrical energy. A model of spatial charge separation within the molecule has been used to describe this conversion. However, an analysis at BESSY II shows that this description of the process is too simple. For the first time, a team there has investigated the fundamental photochemical processes around the metal atom and its ligands. The study has now been published in “Angewandte Chemie, international Edition” and is displayed on the cover. [...]




Newsletter