Keywords: materials research (64) HZB own research (92)

Science Highlight    13.03.2019

X-ray analysis of carbon nanostructures helps material design

Schematic view of carbon structures with pores.
Copyright: HZB

The intensity of the single peak increases as the chlorination temperature increases and carbons show increased order.
Copyright: HZB

Nanostructures made of carbon are extremely versatile: they can absorb ions in batteries and supercapacitors, store gases, and desalinate water. How well they cope with the task at hand depends largely on the structural features of the nanopores. A new study from the HZB has now shown that structural changes that occur due to morphology transition with increasing temperature of the synthesis can also be measured directly – using small-angle X-ray scattering. The results have now been published in the journal Carbon.

Optimized nanoporous carbons can serve as electrodes for fast electron and ion transport or improve the performance of energy storage and conversion devices. Thus the tunability of the size, shape, and distribution of pores is highly required. The team at the HZB Institute for Soft Matter and Functional Materials collaborated with a group at the University of Tartu, Estonia, to inquire the nanoarchitecture, inner surface, size, form and distribution of nanopores in dependence of the synthesis conditions.

From 600 to 1000 degrees

Colleagues in Estonia produced a series of nanoporous carbons by reacting a powder of molybdenum carbide (Mo2C) with gaseous chlorine at 600, 700, 800, 900, and 1000 degrees Celsius. Depending on the synthesis conditions chosen, the nanoporous carbon exhibit different properties such as surface area, porosity, electronic and ionic conductivity, hydrophilicity and electrocatalytic activity.

Small Angle X-ray Scattering SAXS

Surface structures were analysed by transmission electron microscopy at the HZB. The interior surface area of nanocarbon materials is usually investigated by adsorption of gas. However, this method is not only comparatively inaccurate, it also contains no information about the shape and size of the pores. For deeper insights, Dr. Eneli Härk and her colleagues at HZB worked with small-angle X-ray scattering, a technique permitting to obtain information on various structural features on the nanometer scale including the mean pore size.

All about nanopores

Small-angle X-ray scattering not only provides information on the precise inner surface area and the average pore size, but also on their angularity, i.e., sharp edges of formed pores, which play a major role for the functionalization of the materials. “The SAXS analysis summarizes over an enormous amount of micropores omitting misleading assumptions thereby directly relating the nanostructural architecture of the material to macroscopic technical parameters under investigation in engineering” Härk explains. 

The main aim was to understand structural formation, and electrochemical characteristics of carbon as a function of the synthesis temperature. “For optimal function, not only the high inner surface area is crucial, but the pores should have exactly the right shape, size and distribution”, says Härk.

 

The study is published in "Carbon" (2019): Carbide Derived Carbons Investigated by Small Angle X-ray Scattering: Inner Surface and Porosity vs. Graphitization; Eneli Härk, Albrecht Petzold, Günter Goerigk, Sebastian Risse, Indrek Tallo, Riinu Härmas, Enn Lust and Matthias Ballauff.

DOI: 10.1016/j.carbon.2019.01.076

 

arö


           



You might also be interested in
  • <p>Water molecules are excited with X-ray light (blue). From the emitted light (purple) information on H-bonds can be obtained.</p>SCIENCE HIGHLIGHT      20.02.2019

    Water is more homogeneous than expected

    In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases even under ambient conditions. However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss Light Source show that this is not the case. At room temperature and normal pressure, the water molecules form a fluctuating network with an average of 1.74 ± 2.1% donor and acceptor hydrogen bridge bonds per molecule each, allowing tetrahedral coordination between close neighbours. [...]


  • <p>The cones represents the magnetization of the nanoparticles. In the absence of electric field (strain-free state) the size and separation between particles leads to a random orientation of their magnetization, known as superparamagnetism</p>SCIENCE HIGHLIGHT      14.02.2019

    Spintronics by “straintronics”: Superferromagnetism with electric-field induced strain

    Data storage in today’s magnetic media is very energy consuming. Combination of novel materials and the coupling between their properties could reduce the energy needed to control magnetic memories thus contributing to a smaller carbon footprint of the IT sector. Now an international team led by HZB has observed at the HZB lightsource BESSY II a new phenomenon in iron nanograins: whereas normally the magnetic moments of the iron grains are disordered with respect each other at room temperature, this can be changed by applying an electric field: This field induces locally a strain on the system leading to the formation of a so-called superferromagnetic ordered state. [...]




Newsletter