Photovoltaik wächst rasanter als erwartet im globalen Energiesystem

© mpieske/Pixabay

Am HZB werden Solarzellen der nächsten Generation untersucht. Das Foto zeigt das Helmholtz-Innovationslabor HySPRINT am HZB.

Am HZB werden Solarzellen der nächsten Generation untersucht. Das Foto zeigt das Helmholtz-Innovationslabor HySPRINT am HZB. © P. Dera/HZB

Dramatische Kostensenkungen und der rasante Ausbau der Produktionskapazitäten machen die Photovoltaik zu einer der attraktivsten Technologien für eine globale Energiewende. Nicht nur der Stromsektor, sondern auch Verkehr, Wärme, Industrie und Chemieprozesse werden in Zukunft maßgeblich durch Solarstrom versorgt, weil der bereits jetzt in großen Teilen der Welt die preiswerteste Form der Stromerzeugung darstellt. Darin liegen Chancen, aber auch Herausforderungen – auf der Ebene des Energiesystems ebenso wie für Forschung und Industrie. Die Eckpunkte der zukünftigen Entwicklungen beschreiben führende internationale Photovoltaik-Forscher rund um die Global Alliance for Solar Energy Research Institutes in einem Artikel, der am 31. Mai im Journal »Science« erschien.

Die Global Alliance for Solar Energy Research Institutes GA-SERI besteht aus dem Fraunhofer-Institut für Solare Energiesysteme ISE, dem National Institute of Advanced Industrial Science and Technology AIST (Japan) und dem National Renewable Energy Laboratory NREL (USA). Seit 2016 diskutiert dieser internationale Expertenkreis, erweitert um Forscher aus weiteren Gruppen und Ländern, regelmäßig über die Herausforderungen für den Einsatz der Photovoltaik zur Realisierung der weltweiten Klimaziele. 

HZB-Experte: Photovoltaik bietet große Chancen

Prof. Dr. Rutger Schlatmann, Experte für Photovoltaik und Direktor des PVcomB sowie Bereichssprecher Erneuerbare Energie am Helmholtz-Zentrum Berlin, hat ebenfalls an dieser Expertise mitgewirkt. Er betont nicht nur das große Potential der Photovoltaik für den Klimaschutz, sondern auch die enormen Chancen für die Wirtschaft, die damit verbunden sind. Die traditionell starke Photovoltaik-Forschung am HZB wurde in den letzten Jahren erweitert und umfasst seitdem auch solare Brennstoffe sowie neuartige Materialien für Batterien und Katalysatoren für energieeffizientere Chemieprozesse und passt somit hervorragend zu der im Science-Paper beschriebenen Vision.

In aller Kürze finden Sie hier ausgewählte Ergebnisse aus dem Expertenbericht. Die Langfassung können Sie auf der Webseite des Fraunhofer Instituts für Solare Energiesysteme nachlesen oder direkt bei Science.

Die PV-Kapazität steigt schneller als erwartet

  • 2018 waren weltweit 500 Gigawatt PV-Leistung installiert.
  • 2030 rechnen die Experten weltweit mit 10 Terawatt installierter PV-Leistung.
  • 2050 rechnen die Experten weltweit mit 30 bis 70 Terawatt installierter PV-Leistung.

PV wird eine der preiswertesten Technologien

Die Lernkurve der Photovoltaik zeigt von 1976 bis 2018: pro Verdopplung der installierten Kapazität sinken die Kosten um 23 %. Die Experten halten es für wahrscheinlich, dass sich diese Kostensenkung weiter fortsetzt.

In Deutschland ist die kWh Solarstrom mit 4-10 €cent schon längst unterhalb des Endkundenpreises (>25 €ct/kWh), aber mittlerweile auch unterhalb der Preise für die Großindustrie

Höhere Wirkungsgrade sind in Aussicht

Bei der Silizium-PV, die 95 % des Weltmarkts abdeckt, geht der Trend zu kostengünstigen Solarzellen mit passivierten Kontakten, die höhere Wirkungsgrade ermöglichen. Technologische Fortschritte im Bereich der Dünnschicht-Technologien haben hier die Wirkungsgrade über die 20 %-Marke gehoben, bei Mehrfachsolarzellen auf Basis von Silizium sind es bereits über 35%.

Bei einer Produktion im Terawatt-Bereich werden Fragen der Materialversorgung (vor allem bei seltenen Elementen wie Silber), der Nachhaltigkeit und des Recyclings stärker in den Mittelpunkt rücken. Netze und Leistungselektronik, Speicher, Sektorenkopplung, sowie Power to Gas können weiterentwickelt werden, um einen hohen Anteil von Solarstrom aufzunehmen. Die Lösungen sind bereits vorhanden.

Publikation:

Science, 31 May 2019: »Terawatt-scale photovoltaics: Transform global energy – Improving costs and scale reflect looming opportunities«

DOI: 10.1126/science.aaw1845

Authors: Nancy M. Haegel, Harry Atwater Jr., Teresa Barnes, Christian Breyer, Anthony Burrell, Yet-Ming Chiang, Stefaan De Wolf, Bernhard Dimmler, David Feldman, Stefan Glunz, Jan Christoph Goldschmidt, David Hochschild, Ruben Inzunza, Izumi Kaizuka, Ben Kroposki, Sarah Kurtz, Sylvere Leu, Robert Margolis, Koji Matsubara, Axel Metz, Wyatt K. Metzger, Mahesh Morjaria, Shigeru Niki, Stefan Nowak, Ian Marius Peters, Simon Philipps, Thomas Reindl, Andre Richter, Doug Rose, Keiichiro Sakurai, Rutger Schlatmann, Masahiro Shikano, Wim Sinke, Ron Sinton, B.J. Stanbery, Marko Topic, William Tumas, Yuzuru Ueda, Jao van de Lagemaat, Pierre Verlinden, Matthias Vetter, Emily Warren, Mary Werner, Masafumi Yamaguchi, Andreas W. Bett

HZB/ISE

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.