Photovoltaics are growing faster than expected in the global energy system

© mpieske/Pixabay

At HZB, science teams explore solar cells of the next generation. The picture shows the Helmholtz Innovation lab HySPRINT at HZB.

At HZB, science teams explore solar cells of the next generation. The picture shows the Helmholtz Innovation lab HySPRINT at HZB. © P. Dera/HZB

Dramatic cost reductions and the rapid expansion of production capacities make photovoltaics one of the most attractive technologies for a global energy turnaround. Not only the electricity sector, but also transport, heating, industry and chemical processes will in future be supplied primarily by solar power, because it is already the cheapest form of electricity generation in large parts of the world. This is where opportunities and challenges lie - at the level of the energy system as well as for research and industry. Leading international photovoltaic researchers from the Global Alliance for Solar Energy Research Institutes describe the cornerstones of future developments in an article published in the journal "Science" on 31 May.

The Global Alliance for Solar Energy Research Institutes GA-SERI consists of the Fraunhofer Institute for Solar Energy Systems ISE, the National Institute of Advanced Industrial Science and Technology AIST (Japan) and the National Renewable Energy Laboratory NREL (USA). Since 2016, this international group of experts, expanded by researchers from other groups and countries, has regularly discussed the challenges for the use of photovoltaics to achieve global climate goals. 

HZB Solar Energy Expertise:

Prof. Dr. Rutger Schlatmann, expert for photovoltaics and director of PVcomB as well as division spokesman for renewable energy at the Helmholtz-Zentrum Berlin, also contributed to this expertise. He emphasizes not only the great potential of photovoltaics for climate protection, but also the enormous opportunities for the economy associated with it. The traditionally strong photovoltaic research at HZB has been expanded in recent years on solar fuels as well as novel materials for batteries and catalysts for more energy-efficient chemical processes and thus fits perfectly with the vision described in the Science Paper.

Selected Results:

In a nutshell, you will find selected results from the expert report here. The long version can be found on the website of the Fraunhofer Institute for Solar Energy Systems or directly at Science.

PV capacity is increasing faster than expected

  • By 2018, 500 gigawatts of PV capacity had been installed worldwide.
  • In 2030, experts expect 10 terawatts of installed PV capacity worldwide.
  • By 2050, experts expect 30 to 70 terawatts of installed PV capacity worldwide.

PV will become one of the cheapest technologies

The learning curve for photovoltaics shows from 1976 to 2018: costs are reduced by 23 % per doubling of installed capacity. Experts believe it is likely that this cost reduction will continue.

In Germany, the kWh of solar power, at 4-10 € cents, has long been below the end customer price (>25 € ct/kWh), but now also below the prices for large-scale industry.

Higher efficiencies are in sight

With silicon PV, which covers 95 % of the world market, the trend is towards low-cost solar cells with passivated contacts that enable higher efficiencies. Technological advances in the field of thin-film technologies have raised efficiency levels above the 20 % mark, while the figure for multiple solar cells based on silicon is already over 35 %.

Outlook on sustainablility, networks, storage and sector coupling

For production in the terawatt range, issues of material supply (especially for rare elements such as silver), sustainability and recycling will come more into focus. Networks and power electronics, storage, sector coupling and power to gas can be further developed to absorb a high proportion of solar power. The technologies are already available.

To the publication:

Science, 31 May 2019: »Terawatt-scale photovoltaics: Transform global energy – Improving costs and scale reflect looming opportunities«

DOI: 10.1126/science.aaw1845

Authors: Nancy M. Haegel, Harry Atwater Jr., Teresa Barnes, Christian Breyer, Anthony Burrell, Yet-Ming Chiang, Stefaan De Wolf, Bernhard Dimmler, David Feldman, Stefan Glunz, Jan Christoph Goldschmidt, David Hochschild, Ruben Inzunza, Izumi Kaizuka, Ben Kroposki, Sarah Kurtz, Sylvere Leu, Robert Margolis, Koji Matsubara, Axel Metz, Wyatt K. Metzger, Mahesh Morjaria, Shigeru Niki, Stefan Nowak, Ian Marius Peters, Simon Philipps, Thomas Reindl, Andre Richter, Doug Rose, Keiichiro Sakurai, Rutger Schlatmann, Masahiro Shikano, Wim Sinke, Ron Sinton, B.J. Stanbery, Marko Topic, William Tumas, Yuzuru Ueda, Jao van de Lagemaat, Pierre Verlinden, Matthias Vetter, Emily Warren, Mary Werner, Masafumi Yamaguchi, Andreas W. Bett

HZB/ISE


You might also be interested in

  • Green Deal Ukraina: HZB launches an Energy & Climate Project
    News
    07.06.2023
    Green Deal Ukraina: HZB launches an Energy & Climate Project
    Green Deal Ukraina, funded by the German Federal Ministry of Education and Research, is working with partner institutions in Ukraine and Poland to establish an energy and climate think tank in the capital, Kiev. The aim is to provide independent and evidence-based advice on rebuilding a sustainable energy system in Ukraine. After all, the implementation of energy and climate legislation is a prerequisite for Ukraine's accession to the EU. The project started on 1 June 2023 and will run for four years.
  • Spintronics at BESSY II: Domain walls in magnetic nanowires
    Science Highlight
    02.06.2023
    Spintronics at BESSY II: Domain walls in magnetic nanowires
    Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.
  • Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen & Dienstleistungen
    Nachricht
    26.05.2023
    Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen & Dienstleistungen
    Im Rahmen der The smarter-e Europe/Intersolar Europe 2023 findet eine Vortragssession organisiert von der Allianz BIPV und dem Solarenergieförderverein Bayern e.V. zum Thema "Bauwerkintegrierte Photovoltaik (BIPV) - Lösungen und Dienstleistungen" statt.

    Datum: 14. Juni 2023, 15:30 -17:15 Uhr
    Ort:       Messe München, Halle A3, Stand A3.150/151