Photovoltaics are growing faster than expected in the global energy system

© mpieske/Pixabay

At HZB, science teams explore solar cells of the next generation. The picture shows the Helmholtz Innovation lab HySPRINT at HZB.

At HZB, science teams explore solar cells of the next generation. The picture shows the Helmholtz Innovation lab HySPRINT at HZB. © P. Dera/HZB

Dramatic cost reductions and the rapid expansion of production capacities make photovoltaics one of the most attractive technologies for a global energy turnaround. Not only the electricity sector, but also transport, heating, industry and chemical processes will in future be supplied primarily by solar power, because it is already the cheapest form of electricity generation in large parts of the world. This is where opportunities and challenges lie - at the level of the energy system as well as for research and industry. Leading international photovoltaic researchers from the Global Alliance for Solar Energy Research Institutes describe the cornerstones of future developments in an article published in the journal "Science" on 31 May.

The Global Alliance for Solar Energy Research Institutes GA-SERI consists of the Fraunhofer Institute for Solar Energy Systems ISE, the National Institute of Advanced Industrial Science and Technology AIST (Japan) and the National Renewable Energy Laboratory NREL (USA). Since 2016, this international group of experts, expanded by researchers from other groups and countries, has regularly discussed the challenges for the use of photovoltaics to achieve global climate goals. 

HZB Solar Energy Expertise:

Prof. Dr. Rutger Schlatmann, expert for photovoltaics and director of PVcomB as well as division spokesman for renewable energy at the Helmholtz-Zentrum Berlin, also contributed to this expertise. He emphasizes not only the great potential of photovoltaics for climate protection, but also the enormous opportunities for the economy associated with it. The traditionally strong photovoltaic research at HZB has been expanded in recent years on solar fuels as well as novel materials for batteries and catalysts for more energy-efficient chemical processes and thus fits perfectly with the vision described in the Science Paper.

Selected Results:

In a nutshell, you will find selected results from the expert report here. The long version can be found on the website of the Fraunhofer Institute for Solar Energy Systems or directly at Science.

PV capacity is increasing faster than expected

  • By 2018, 500 gigawatts of PV capacity had been installed worldwide.
  • In 2030, experts expect 10 terawatts of installed PV capacity worldwide.
  • By 2050, experts expect 30 to 70 terawatts of installed PV capacity worldwide.

PV will become one of the cheapest technologies

The learning curve for photovoltaics shows from 1976 to 2018: costs are reduced by 23 % per doubling of installed capacity. Experts believe it is likely that this cost reduction will continue.

In Germany, the kWh of solar power, at 4-10 € cents, has long been below the end customer price (>25 € ct/kWh), but now also below the prices for large-scale industry.

Higher efficiencies are in sight

With silicon PV, which covers 95 % of the world market, the trend is towards low-cost solar cells with passivated contacts that enable higher efficiencies. Technological advances in the field of thin-film technologies have raised efficiency levels above the 20 % mark, while the figure for multiple solar cells based on silicon is already over 35 %.

Outlook on sustainablility, networks, storage and sector coupling

For production in the terawatt range, issues of material supply (especially for rare elements such as silver), sustainability and recycling will come more into focus. Networks and power electronics, storage, sector coupling and power to gas can be further developed to absorb a high proportion of solar power. The technologies are already available.

To the publication:

Science, 31 May 2019: »Terawatt-scale photovoltaics: Transform global energy – Improving costs and scale reflect looming opportunities«

DOI: 10.1126/science.aaw1845

Authors: Nancy M. Haegel, Harry Atwater Jr., Teresa Barnes, Christian Breyer, Anthony Burrell, Yet-Ming Chiang, Stefaan De Wolf, Bernhard Dimmler, David Feldman, Stefan Glunz, Jan Christoph Goldschmidt, David Hochschild, Ruben Inzunza, Izumi Kaizuka, Ben Kroposki, Sarah Kurtz, Sylvere Leu, Robert Margolis, Koji Matsubara, Axel Metz, Wyatt K. Metzger, Mahesh Morjaria, Shigeru Niki, Stefan Nowak, Ian Marius Peters, Simon Philipps, Thomas Reindl, Andre Richter, Doug Rose, Keiichiro Sakurai, Rutger Schlatmann, Masahiro Shikano, Wim Sinke, Ron Sinton, B.J. Stanbery, Marko Topic, William Tumas, Yuzuru Ueda, Jao van de Lagemaat, Pierre Verlinden, Matthias Vetter, Emily Warren, Mary Werner, Masafumi Yamaguchi, Andreas W. Bett

HZB/ISE

You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Nachricht
    24.01.2023
    NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Der 2. Netzwerktag der Allianz BIPV findet statt am

    14.02.2023
    10:00 - ca. 16:00 Uhr

    Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.