Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert

Ein Röntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden.

Ein Röntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden. © M. Künsting/HZB

In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild.

Organische Solarzellen wie die Grätzel-Zelle bestehen aus Farbstoffen, die auf Übergangsmetall-Komplex-Verbindungen basieren. Sonnenlicht regt die äußeren Elektronen des Komplexes so an, dass sie von Orbitalen am Metallzentrum in Orbitale angrenzender Verbindungen transportiert werden. Bisher ging man davon aus, dass bei diesem Prozess Ladungsträger räumlich getrennt werden, welche dann abgezogen werden, sodass ein elektrischer Strom fließen kann. Dass dies nicht so ist, hat nun ein Team um Alexander Föhlisch am HZB aufklären können.

Mithilfe der kurzen Röntgenpulse von BESSY II im Low-Alpha-Betrieb konnten sie Schritt für Schritt verfolgen, welche Prozesse die Anregung durch Licht (Laserpuls) in einem Eisenkomplex auslöst. „Wir können direkt beobachten, wie der Laserpuls die 3d-Orbitale am Metall entvölkert“, erklärt Raphael Jay, Doktorand und Erstautor der Studie. Mit Hilfe von theoretischen Berechnungen konnten sie die Messdaten aus der zeitaufgelösten Röntgenabsorptions-Spektroskopie sehr genau interpretieren. Dabei ergibt sich folgendes Bild: Der Laserpuls sorgt zunächst tatsächlich dafür, dass Elektronen vom 3d-Orbital des Eisenatoms auf die angrenzenden Liganden delokalisiert werden. Diese Liganden schieben allerdings ihrerseits sofort Ladung zurück in Richtung des Metall-Atoms, wodurch der Verlust elektronischer Ladung am Metall und die damit ursprünglich verbundene Ladungstrennung sofort kompensiert wird.

Diese Erkenntnisse könnten dazu beitragen, neue Materialien für Farbstoffsolarzellen zu entwickeln. Denn bisher werden standardmäßig Ruthenium-Komplexe in organischen Solarzellen verwendet. Ruthenium ist jedoch ein seltenes Element und entsprechend teuer. Eisen-Komplexe wären deutlich billiger, weisen aber hohe Rekombinationsraten auf. Weitere Untersuchungen werden zeigen, worauf es bei Übergangsmetall-Komplexen ankommt, damit Licht effizient in elektrische Energie umgewandelt werden kann.

Covalency-driven preservation of local charge densities in a metal-to-ligand charge-transfer excited iron photosensitizer

Raphael M. Jay, Sebastian Eckert, Vinícius Vaz da Cruz, Mattis Fondell, Rolf Mitzner, and Alexander Föhlisch

Angewandte Chemie International Edition

Doi: 10.1002/anie.201904761

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.