Oldest completely preserved lily discovered

© Museum für Naturkunde Berlin

A color code of the CT scan shows details of the plant: main axis (turquoise), leaves (dark green), pistils (light green), petals (orange).

A color code of the CT scan shows details of the plant: main axis (turquoise), leaves (dark green), pistils (light green), petals (orange).

Already 115 million years ago, tropical flowering plants were apparently very diverse and showed all typical characteristics. This is the conclusion of an international team of researchers led by Clément Coiffard, Museum für Naturkunde Berlin. The team reported in the renowned journal Nature Plants on the oldest completely preserved lily, Cratolirion bognerianum, which was discovered at a site in present-day Brazil. With the help of 3D computer tomography at the Helmholtz-Zentrum Berlin, details on the back of the fossilised plant could also be analysed. The results raise new questions about the role of the tropics in the development of past and present ecosystems.

Botanist Dr. Clément Coiffard of the Museum für Naturkunde Berlin discovered the oldest, completely preserved lily in the research collection: Cratolirion bognerianum was found in calcareous sediments of a former freshwater lake in Crato in northeastern Brazil. With an age of about 115 million years, Cratolirion is one of the oldest known monocotyledonous plants. These include orchids, sweet grasses, lilies and lilies of the valley.

Well preserved with all details

Cratolirion is extraordinarily well preserved, with all roots, the flower and even the individual cells are fossilised. With a length of almost 40 centimetres, the specimen is not only extremely huge, but also shows almost all the typical characteristics of monocotyledonous plants, including parallel-veined, narrow leaves with a leaf sheath, a fibrous root system and triple flowers.

3D computertomography at HZB

However, it was not trivial to examine the fossilised object, as it consisted of iron oxides associated with the stone. In order to see details here, Coiffard collaborated with the HZB physicist Dr. Nikolay Kardjilov, who is an expert in 3D analysis with X-rays and neutrons. At the HZB he also built up a 3D computed x-ray tomography and refined the data analysis in such a way that hardly any disturbing artefacts arise during the investigation of large, flat objects. This made it possible to analyse the details of the inflorescence hidden in the stone. A colour coding in the CT scan makes these details visible: the main axis is marked in turquoise, the supporting leaves in dark green, the pistils in light green and the remains of the actual petals can still be seen in orange. 

Unusual diversity

Many early dicotyledonous flowering plants have already been described from the same sediments of the former freshwater lake in Crato. These include water lilies, aron rods, drought-resistant magnolias and relatives of pepper and laurel. In contrast to other flowering plants of the same age from the USA, Portugal, China and Argentina, the flowering plants of the Crato-Flora are unusually diverse. This could be due to the fact that Lake Crato was in the lower latitudes, but all other fossils of early flowering plants come from the middle latitudes.

From this newly described plant Cratolirion bognerianum and the species of Crato flora mentioned above, it can be deduced that the tropical flowering plants were already very diverse. "It is probable that flowering plants originated in the tropics, but only very few fossils have been described to date," explains Coiffard. This study thus provides new insights into the role of the tropics in the development of early flowering plants and their rise to global supremacy.

Published in Nature Plants (2019): Fossil evidence of core monocots in the Early Cretaceous; Clément Coiffard, Nikolay Kardjilov, Ingo Manke and Mary E. C. Bernardes-de-Oliveira

Doi: 10.1038/s41477-019-0468-y

MfN/HZB

You might also be interested in

  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • High-energy X-rays leave a trace of destruction in bone collagen
    Science Highlight
    22.12.2022
    High-energy X-rays leave a trace of destruction in bone collagen
    A team of medical researchers at Charité has analyzed damage by focused high energetic X-rays in bone samples from fish and mammals at BESSY II. With a combination of microscopy techniques, the scientists could document the destruction of collagen fibres induced by electrons emitted from the mineral crystals. X-ray methods might impact bone samples when measured for a long time they conclude.
  • Neutron experiments reveal what maintains bones in good function
    Science Highlight
    21.12.2022
    Neutron experiments reveal what maintains bones in good function
    What keeps bones able to remodel themselves and stay healthy? A team from Charité Berlin has discovered clues to the key function of non-collagen protein compounds and how they help bone cells react to external load. The scientists used fish models to examine bone samples with and without bone cells to elucidate differences in microstructures and the incorporation of water. Using 3D neutron tomography at the Berlin research reactor BER II, they succeeded for the first time in precisely measuring the water diffusion across bone material - with a surprising result.