Save time using maths: analytical tool designs corkscrew-shaped nano-antennae

The nano-antennae werde produced in an electron microscope by direct electron-beam writing.

The nano-antennae werde produced in an electron microscope by direct electron-beam writing. © HZB

For the first time, an HZB team has derived analytically how corkscrew-shaped nano-antennas interact with light. The mathematical tool can be used to calculate the geometry that a nano-antenna must have for specific applications in sensor technology or information technology.

The nanostructures from Katja Höflich's HZB team are shaped like corkscrews and made of silver. Mathematically, such a nano antenna can be regarded as an one-dimensional line that forms a helix, characterized by parameters such as diameter, length, number of turns per unit length, and handedness.

The nano corkscrews are highly sensitive to light: depending on frequency and polarisation, they can strongly enhance it. Because helical antennas have a handedness, they can select light quanta according to their handedness, i.e. their spin. This results in novel applications in information technology based on the spin quantum number of light. Another application may lay in sensor technology in detecting chiral molecular species down to the single molecule level.

Usually, the interaction of such nano-antennas with an electromagnetic field is determined using numerical methods. Each helix geometry, however, requires a new numerically expensive calculation.

For the first time, Höflich and her team have now derived an analytically exact solution of the problem. “We now have a formula that tells us how a nano-antenna with specific parameters responds to light”, says Höflich. This analytical description can be used as a design tool, as it specifies the required geometrical parameters of a nano-helix to amplify electromagnetic fields of desired frequencies or polarisation.

The HZB researchers were able to  fabricate nano-antennae in an electron microscope at the CCMS corelab of HZB by using direct electron-beam writing. The electron beam first writes a helix-shaped carbon structure one point at a time. This structure is subsequently coated with silver. The actual measurements of the optical properties for these silver nano-antennae are in good agreement with the calculated properties predicted by the analytical model.

Optica  (2019, Vol. 6, Issue 9): “Resonant behavior of a single plasmonic helix”; Katja Höflich, Thorsten Feichtner, Enno Hansjürgen, Caspar Haverkamp, Heiko Kollmann, Christoph Lienau, Martin Siles.

 

DOI: 10.1364/OPTICA.6.001098

arö

You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    27.01.2023
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • Recommended reading: Bunsen magazine with focus on molecular water research
    News
    13.01.2023
    Recommended reading: Bunsen magazine with focus on molecular water research
    Water not only has some well-known anomalies, but is still full of surprises. The first issue 2023 of the Bunsen Magazine is dedicated to molecular water research, from the ocean to processes in electrolysis. The issue presents contributions from researchers cooperating within the framework of a European research initiative in the "Centre for Molecular Water Science" (CMWS). A team at HZB presents results from the synchrotron spectroscopy of water. Modern X-ray sources can be used to study molecular and electronic processes in water in detail.