Nanoparticles in lithium-sulphur batteries detected with neutron experiment

The operando cell was developed at HZB and allows to analyse processes inside the battery during charging cycles with neutrons.

The operando cell was developed at HZB and allows to analyse processes inside the battery during charging cycles with neutrons. © S. Risse/HZB

An HZB team has for the first time precisely analysed how nanoparticles of lithium sulphide and sulphur precipitate onto battery electrodes during the course of the charging cycle. The results can help increase the service life of lithium-sulphur batteries.

Lithium-sulphur batteries are regarded as one of the most promising candidates for the next generation of energy storage devices. They have a theoretical gravimetric energy density that is five times higher than that of the best lithium-ion batteries currently available. And they even work at sub-zero temperatures of down to -50 °C. In addition, sulphur is inexpensive and environmentally friendly.

Capacity loss

However, their capacity so far has fallen sharply with every charge-discharge cycle, so that such batteries are not yet long-lasting. The loss of capacity is caused by complicated reaction processes at the electrodes inside the battery cell. It is therefore particularly important to understand exactly how the charge (sulphur) and discharge (lithium sulphide) products precipitate and dissolve. While sulphur precipitates macroscopically and therefore lends itself to examination by imaging techniques or X-ray diffraction during cycling, lithium sulphide is difficult to detect due to its sub-10-nm particle size.

"Operando" observations with neutrons

Insight into this has now been provided for the first time by investigations with the BER II neutron source at the HZB. Dr. Sebastian Risse used a measuring cell he developed to illuminate lithium-sulphur batteries with neutrons during charging and discharging cycles (operando) and simultaneously performed additional measurements with impedance spectroscopy.

This enabled him and his team to analyse the dissolution and precipitation of lithium sulphide with extreme precision during ten discharge/charging cycles. Since neutrons interact strongly with deuterium (heavy hydrogen), the researchers used a deuterated electrolyte in the battery cell to make both the solid products (sulphur and lithium sulphide) visible.

Surprising insight

Their conclusion: “We observed that the lithium sulphide and sulphur precipitation does not take place inside the microporous carbon electrodes, but instead on the outer surface of the carbon fibres”, says Risse. These results provide a valuable guide for the development of better battery electrodes.

The study is published in ACS Nano, (2019): Operando Analysis of a Lithium/Sulfur Battery by Small Angle Neutron Scattering. Sebastian Risse, Eneli Härk, Ben Kent and Matthias Ballauff

DOI: http://dx.doi.org/10.1021/acsnano.9b03453

arö


You might also be interested in

  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).
  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Where quantum computers can score
    Science Highlight
    15.03.2024
    Where quantum computers can score
    The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.