Faster than ever - neutron tomography detects water uptake by roots

Time-resolved 3D neutron tomography shows the rise of deuterated water in the root system of a lupine plant.

Time-resolved 3D neutron tomography shows the rise of deuterated water in the root system of a lupine plant. © C. Tötzke/Uni Potsdam

Data from high-speed neutron tomography of a lupine root system grown in sandy soil can be evaluated by different methods.

Data from high-speed neutron tomography of a lupine root system grown in sandy soil can be evaluated by different methods. © C. Tötzke/Uni Potsdam

A team of researchers from Potsdam, Berlin and Grenoble was able to visualize the transport of water in soil as well as through roots of lupine plants using ultrafast 3D neutron imaging. The high-speed neutron tomography developed at HZB generates a complete 3D image every 1.5 seconds and is thus seven times faster than before. The method facilitates a better understanding of water and nutrient uptake of crop plants. The measurements were performed at the neutron source of the Laue Langevin Institute (ILL) in Grenoble, France. The method can also be applied to investigate transport processes in various porous material systems.

Water and nutrient uptake by plants involves dynamic and complex interactions of roots with the surrounding soil. "The tomographic method makes it possible to track 3D water paths from soil into roots over time," says Dr. Christian Tötzke, who heads the research team at the University of Potsdam. "These insights can help to develop strategies for more efficient and sustainable use of water and fertilizer in crop cultivation."

Water transport examined

Neutrons are sensitive mainly to light elements such as hydrogen, lithium and their compounds. Neutron tomography can therefore be used to precisely map water content non-invasively, both in the roots and in the surrounding soil of a sample. How plants can take up water and nutrients depends largely on the properties of the rhizosphere, a few millimetres thick soil layer surrounding the roots. This region not only delivers the mineral and organic components from soil to roots, but is also influenced by root exudates and microbial  activity.

One 3D image per second

Until now, the acquisition of 3D neutron images took at least ten seconds per tomogram. This still resulted in a limitation to study rapid processes such as the infiltration of the root system with water. To enable more images in a shorter time, a team led by HZB expert Dr. Nikolay Kardjilov optimized the method at NeXT-Grenoble, a recently opened tomography instrument of the Laue-Langevin Institute (ILL), which is supplied with cold neutrons by a 60 Megawatt research reactor. By exploiting the much more intense neutron beam, it has been possible to reduce the recording time per tomogram to almost one second. "The result even exceeded our expectations," explains Tötzke: "The achieved acquisition rate was higher than assumed beforehand. Nevertheless, the signal-to-noise ratio and the spatial image resolution could be improved also".

Applications in battery research

Now that the technical capabilities of ultrafast neutron tomography have been demonstrated, Kardjilov and his team are working on further improving the method and establishing its application in other research areas. Since the Berlin neutron source of the HZB will cease operation in December, the fast imaging set-up will be integrated into the NeXT instrument in Grenoble in order to be able to investigate fast transport processes in other materials in the future. For example, high-speed neutron tomography could provide new insights into the hydraulic fracturing of porous rock formations or could be used to investigate ion transfer during fast charging and discharging of lithium batteries in order to increase the safety, capacity and durability of such energy storage systems.

Published with special recommendations of the editor in Optics Express (2019): "What comes NeXT? - High-Speed Neutron Tomography at ILL"; C. Tötzke, N. Kardjilov, N. Lenoir, I. Manke, S.E. Oswald, A. Tengattini.

doi: 10.1364/OE.27.028640

arö

You might also be interested in

  • High-energy X-rays leave a trace of destruction in bone collagen
    Science Highlight
    22.12.2022
    High-energy X-rays leave a trace of destruction in bone collagen
    A team of medical researchers at Charité has analyzed damage by focused high energetic X-rays in bone samples from fish and mammals at BESSY II. With a combination of microscopy techniques, the scientists could document the destruction of collagen fibres induced by electrons emitted from the mineral crystals. X-ray methods might impact bone samples when measured for a long time they conclude.
  • Neutron experiments reveal what maintains bones in good function
    Science Highlight
    21.12.2022
    Neutron experiments reveal what maintains bones in good function
    What keeps bones able to remodel themselves and stay healthy? A team from Charité Berlin has discovered clues to the key function of non-collagen protein compounds and how they help bone cells react to external load. The scientists used fish models to examine bone samples with and without bone cells to elucidate differences in microstructures and the incorporation of water. Using 3D neutron tomography at the Berlin research reactor BER II, they succeeded for the first time in precisely measuring the water diffusion across bone material - with a surprising result.
  • New monochromator optics for tender X-rays
    Science Highlight
    30.11.2022
    New monochromator optics for tender X-rays
    Until now, it has been extremely tedious to perform measurements with high sensitivity and high spatial resolution using X-ray light in the tender energy range of 1.5 - 5.0 keV. Yet this X-ray light is ideal for investigating energy materials such as batteries or catalysts, but also biological systems. A team from HZB has now solved this problem: The newly developed monochromator optics increase the photon flux in the tender energy range by a factor of 100 and thus enable highly precise measurements of nanostructured systems. The method was successfully tested for the first time on catalytically active nanoparticles and microchips.