Joint research group for quantum computing and simulation

© Freie Universität Berlin

Freie Universität Berlin and Helmholtz-Zentrum Berlin (HZB) are now strengthening their cooperation in the field of quantum computing with a new research group. Quantum materials exhibit very interesting properties, which researchers want to use to make data processing significantly faster and more efficient than is currently possible. They can study these materials excellently at synchrotron radiation sources such as BESSY II. It has proven especially promising to predict the material properties in quantum simulations before running the experiments. Taking this approach allows such experiments to be conducted more targetedly.

“Simulating how highly complex material properties emerge”

Jens Eisert is a professor of physics at Freie Universität Berlin and the head of the joint research group. He is an internationally renowned expert for quantum many-body theory, quantum information theory, and quantum optics.

How did this collaboration with HZB come about?

Jens Eisert: Our collaboration arose out of promising and inspiring discussions with Bella Lake, a physicist at Helmholtz-Zentrum Berlin. We had been working on problems of strongly correlated systems in the laboratory, which were difficult to solve with conventional methods. At that stage, the methods of tensor networks were able to deliver the first insights for those systems, but not a comprehensive picture. It took a lot of hard work before we could develop methods powerful enough to model and simulate correlated systems out of the laboratory. From this cooperation, we recognised the major potential that existed in stronger collaboration.

What other points of contact do you see between your research and the topics addressed at HZB?

There are many opportunities. The initial discussions with Bella Lake have culminated in a research programme that offers many possibilities – a genuinely comprehensive programme.To name a few, Johannes Reuther, Oliver Rader, Boris Naydenov, Annika Bande, and other researchers from HZB have announced their interest in collaborating. And indeed it makes sense, from a strategic point of view, to build up a combined initiative on quantum technologies in Berlin.

Are there already any concrete ideas for practical projects the research group can work on?

Definitely. There are many topics that we are already working on, or intend to tackle soon. As a concrete example, we are investigating how highly complex properties emerge out of simple interactions in quantum materials – and how they can be modelled. Together, we also want to delve deeper into questions of realistic quantum computers and quantum simulators. First, we will recruit two new researchers to tackle those questions. They will be working mainly at Freie Universität Berlin, but will maintain very close contact with HZB. I am very pleased about this collaboration because working directly with groups from HZB who also conduct experiments is very fruitful for theoretical physics.

sz


You might also be interested in

  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.