Joint research group for quantum computing and simulation

© Freie Universität Berlin

Freie Universität Berlin and Helmholtz-Zentrum Berlin (HZB) are now strengthening their cooperation in the field of quantum computing with a new research group. Quantum materials exhibit very interesting properties, which researchers want to use to make data processing significantly faster and more efficient than is currently possible. They can study these materials excellently at synchrotron radiation sources such as BESSY II. It has proven especially promising to predict the material properties in quantum simulations before running the experiments. Taking this approach allows such experiments to be conducted more targetedly.

“Simulating how highly complex material properties emerge”

Jens Eisert is a professor of physics at Freie Universität Berlin and the head of the joint research group. He is an internationally renowned expert for quantum many-body theory, quantum information theory, and quantum optics.

How did this collaboration with HZB come about?

Jens Eisert: Our collaboration arose out of promising and inspiring discussions with Bella Lake, a physicist at Helmholtz-Zentrum Berlin. We had been working on problems of strongly correlated systems in the laboratory, which were difficult to solve with conventional methods. At that stage, the methods of tensor networks were able to deliver the first insights for those systems, but not a comprehensive picture. It took a lot of hard work before we could develop methods powerful enough to model and simulate correlated systems out of the laboratory. From this cooperation, we recognised the major potential that existed in stronger collaboration.

What other points of contact do you see between your research and the topics addressed at HZB?

There are many opportunities. The initial discussions with Bella Lake have culminated in a research programme that offers many possibilities – a genuinely comprehensive programme.To name a few, Johannes Reuther, Oliver Rader, Boris Naydenov, Annika Bande, and other researchers from HZB have announced their interest in collaborating. And indeed it makes sense, from a strategic point of view, to build up a combined initiative on quantum technologies in Berlin.

Are there already any concrete ideas for practical projects the research group can work on?

Definitely. There are many topics that we are already working on, or intend to tackle soon. As a concrete example, we are investigating how highly complex properties emerge out of simple interactions in quantum materials – and how they can be modelled. Together, we also want to delve deeper into questions of realistic quantum computers and quantum simulators. First, we will recruit two new researchers to tackle those questions. They will be working mainly at Freie Universität Berlin, but will maintain very close contact with HZB. I am very pleased about this collaboration because working directly with groups from HZB who also conduct experiments is very fruitful for theoretical physics.

sz

  • Copy link

You might also be interested in

  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed an innovative monochromator that is now being produced and marketed by a company. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.
  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.