Pflanzen nehmen Blei aus Perowskit-Solarzellen stärker auf als erwartet

Auf Bodenproben mit unterschiedlicher Blei-Belastung wuchsen Pfefferminzpflanzen. Anschließend wurde der Bleigehalt in ihren Blättern analysiert.

Auf Bodenproben mit unterschiedlicher Blei-Belastung wuchsen Pfefferminzpflanzen. Anschließend wurde der Bleigehalt in ihren Blättern analysiert. © Fujian Agriculture and Forestry University

Blei aus metall-organischen Perowskitverbindungen wird deutlich stärker von Pflanzen aufgenommen als beispielsweise Blei aus anorganischen Quellen. Dies zeigt eine Studie von HZB-Forscher Antonio Abate mit Partnern aus China und Italien, die in Nature communications veröffentlicht ist.

Bestimmte Perowskitverbindungen gelten als große Hoffnung für noch bessere und vor allem noch günstigere Solarzellen. Ihr Kristallgitter wird von organischen Methylammonium-Kationen gebildet, die von Schwermetall-Atomen und Atomen wie Jod umgeben sind. Die besten Perowskitsolarzellen werden heute mit Blei realisiert. In nur zehn Jahren Forschungsarbeit ließ sich der Wirkungsgrad dieser Solarzellen im Labor von 4 Prozent (2009) auf inzwischen über 25 Prozent (2019) steigern. Blei ist allerdings hochgiftig und darf nicht in die Nahrungskette gelangen. Ein quadratmetergroßes Perowskit-Solarmodul enthält jedoch nur 0,8 Gramm Blei, also sehr wenig im Vergleich zu anderen technischen Quellen von Blei (z.B. in Batterien).

Nun hat ein Team um Prof. Dr. Antonio Abate am Helmholtz-Zentrum Berlin eine Studie konzipiert, um dieses Risiko zu untersuchen. Dafür arbeiteten sie mit einem Team der Landwirtschaftlichen Universität in Fujian, China, sowie mit einer Gruppe an der Universität in Neapel, Italien, zusammen.

Die Pflanzenexperten in Fujian bereiteten Bodenproben mit unterschiedlicher Bleibelastung vor und bauten darauf Minzpflanzen sowie zwei andere Blattpflanzen an. Bei einem Teil der Proben war die Bleibelastung durch anorganische Quellen verursacht, bei einem anderen Teil durch Blei aus Perowskit-Verbindungen. Nach einer Wachstumsperiode analysierten sie den Bleigehalt in den Blättern und anderen Pflanzenteilen.

Die Analysen zeigten, dass Blei aus Perowskit-Solarzellen etwa zehnmal besser aufgenommen wird als aus anorganischen Kontaminations-Quellen. Dies könnte damit zusammenhängen, dass die organischen Kationen (Methyammonium+) im Perowskit den PH-Gehalt des Bodens verändern und damit die Bleiaufnahme durch die Pflanzen begünstigen, vermutet Dr. Qiong Wang aus dem Team von Abate. „Diese Ergebnisse weisen darauf hin, dass man Perowskite nicht einfach wie andere Quellen für Bleibelastungen betrachten sollte“, sagt Abate.

Abate forscht an der Entwicklung von bleifreien Perowskit-Solarzellen, die Zinn enthalten. Auch Zinn ist hochgiftig, allerdings reagiert es sehr rasch zu nicht-wasserlöslichen Formen. Eine weitere Versuchsreihe mit Minzpflanzen auf Zinn-belasteten Böden ergab, dass die Pflanzen es deutlich weniger aufnehmen. Bleifreie Perowskit-Solarzellen erreichen allerdings noch bei weitem nicht die hohen Wirkungsgrade von bleihaltigen Solarzellen und haben darüber hinaus auch noch größere Probleme mit der Stabilität.

Das Helmholtz-Zentrum Berlin hat auf dem Gebiet der Perowskit-Solarzellen große Expertise aufgebaut und forscht sowohl an bleihaltigen Verbindungen als auch an bleifreien Alternativen. „Wir müssen diese Materialklasse sehr breit untersuchen“, meint Abate und betont: „Natürlich ist es wichtig, Wirkungsgrade und Langzeitstabilität zu erhöhen, aber wir müssen auch die Umweltverträglichkeit im Blick behalten.“

Nature communications (2020): The biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold concentration. Junming Li, Hai-Lei Cao, Wen-Bin Jiao, Qiong Wang, Mingdeng Wei, Irene Cantone, Jian Lü and Antonio Abate.

DOI: 10.1038/s41467-019-13910-y

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.

  • 5000. Patient in der Augentumortherapie mit Protonen behandelt
    Nachricht
    19.08.2025
    5000. Patient in der Augentumortherapie mit Protonen behandelt
    Seit mehr als 20 Jahren bieten die Charité – Universitätsmedizin Berlin und das Helmholtz-Zentrum Berlin (HZB) gemeinsam die Bestrahlung von Augentumoren mit Protonen an. Dafür betreibt das HZB einen Protonenbeschleuniger in Berlin-Wannsee, die medizinische Betreuung der Patienten erfolgt durch die Charité. Anfang August wurde der 5000. Patient behandelt.
  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.