Dünnschichtsolarzellen aus CIGSe: EU-Projekt Sharc25 steigert Wirkungsgrade

Die Arbeiten am EU Projekt Sharc25 fanden auch im EMIL-Labor statt, wo Dünnschichten und Materialien mit Röntgenstrahlung von BESSY II analysiert werden können.

Die Arbeiten am EU Projekt Sharc25 fanden auch im EMIL-Labor statt, wo Dünnschichten und Materialien mit Röntgenstrahlung von BESSY II analysiert werden können. © Ingo Kniest/HZB

Dünnschichtsolarzellen aus Kupfer, Indium, Gallium und Selen (CIGSe) sind kostengünstig in der Herstellung und erreichen nun Wirkungsgrade von deutlich mehr als 20 Prozent. Dies wurde durch Nachbehandlungen mit Alkali-Elementen erreicht, die auch für eine industrielle Produktion geeignet sind. Ergebnisse zur Wirkungsweise dieser Alkali-Nachbehandlungen aus dem EU-Projekt Sharc25 sind nun in Advanced Energy Materials publiziert.

Dünnschichtsolarmodule benötigen sehr viel weniger Energie für ihre Herstellung als herkömmliche Si-Wafer–basierte PV Module. Deshalb ist ihre Energy-Payback-Time viel kürzer.  Die Energy-Payback-Time ist die Zeit, bis ein PV-Modul so viel Energie produziert hat wie für seine Herstellung nötig war. Eine wichtige Materialklasse für die Dünnschicht-PV sind Chalkopyrit-Verbindungen aus Kupfer, Indium, Gallium und Selen (CIGSe). Diese Elemente werden durch Ko-Verdampfung auf einem Substrat aufgewachsen – und da CIGSe das Licht sehr viel besser absorbiert als Silizium, reicht schon eine sehr dünne Schicht aus, um Licht effizient in elektrische Energie umzuwandeln.

Steigerung auf 22,6 Prozent

Im Rahmen des europäischen Forschungsprojekts Sharc 25 gelang es nun, den Wirkungsgrad von CIGSe-Solarzellen von 21.7 Prozent auf 22.6 Prozent zu steigern.

Ein Fokus des Projektes war es, insbesondere die positiven Effekte der Nachbehandlungen mit Alkali-Elementen wie Kalium, Rubidium, oder Cäsium zu verstehen. Während der Nachbehandlung werden die chemischen und elektronischen Oberflächeneigenschaften des CIGSe Absorbers verändert. Zusätzlich wandern die Alkali-Atome von der Oberfläche in die Korngrenzen zwischen den CIGSe Kristallen und optimieren so offenbar die elektronischen Eigenschaften der Dünnschicht, u.a. wird die Rekombination von Ladungsträgern im CIGSe Volumen verringert. Das funktioniert für CIGSe-Schichten, die bei verschiedenen Temperaturen und auf unterschiedlichen Substraten präpariert werden.

Vorsprung für die Industrie der EU

Am EU-Projekt Sharc25 haben elf Forschungseinrichtungen aus acht Ländern zusammengearbeitet, darunter auch ein HZB-Team um Prof. Marcus Bär. Ein wichtiges Ziel war es dabei, die europäische Vorreiterrolle auf dem Gebiet der Dünnschicht-PV zu sichern. „Dabei gewinnt man in solchen großen EU Projekten speziell Erfahrung darin, mit Werkzeugen der grundlagenorientierten Forschung auch Fragen der industrienahen Material– und Bauteiloptimierung effizient zu bearbeiten. Das ist ein echter Wettbewerbsvorteil und wahrt den Erkenntnis – und Know-how Vorsprung“, meint Bär.

Die Ergebnisse sind in Adv. Energy Materials (2020) publiziert: "Heavy alkali treatment of Cu(In,Ga)Se2 solar cells: Surface versus bulk effects"

DOI: 10.1002/aenm.201903752

Mehr zum Projekt: http://sharc25.eu/

Das Projekt wurde durch das EU-Programm Horizon 2020 unter der Nr. 64100 gefördert.

red.


Das könnte Sie auch interessieren

  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.
  • Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Science Highlight
    03.04.2024
    Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Die Wechselwirkungen zwischen Phosporsäure und dem Platin-Katalysator in Hochtemperatur-PEM-Brennstoffzellen sind komplexer als bisher angenommen. Röntgen-Experimente an BESSY II in einem mittleren Energiebereich (tender x-rays) haben die vielfältigen Oxidationsprozesse an der Platin-Elektrolyt-Grenzfläche entschlüsselt. Die Ergebnisse zeigen auch, dass die Feuchtigkeit in der Brennstoffzelle diese Prozesse beeinflusst, so dass sich hier Möglichkeiten bieten, um Lebensdauer und Wirkungsgrad von Brennstoffzellen zu erhöhen. 
  • Best Innovator Award 2023 für Artem Musiienko
    Nachricht
    22.03.2024
    Best Innovator Award 2023 für Artem Musiienko
    Dr. Artem Musiienko ist für seine bahnbrechende neue Methode zur Charakterisierung von Halbleitern mit einem besonderen Preis ausgezeichnet worden. Auf der Jahreskonferenz der Marie Curie Alumni Association (MCAA) in Mailand, Italien, wurde ihm der MCAA Award für die beste Innovation verliehen. Seit 2023 forscht Musiienko mit einem Postdoc-Stipendium der Marie-Sklodowska-Curie-Actions in der Abteilung von Antonio Abate, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP) am HZB.