Fast and furious: New class of 2D materials stores electrical energy

MXenes are 2D materials forming multi-layered particles (left) from which pseudocapacitors are made. Shining X-ray light on MXenes revealed changes of their chemical structure upon intercalation of urea molecules (right) compared to pristine MXenes (center).

MXenes are 2D materials forming multi-layered particles (left) from which pseudocapacitors are made. Shining X-ray light on MXenes revealed changes of their chemical structure upon intercalation of urea molecules (right) compared to pristine MXenes (center). © Martin Künsting/HZB

Two dimensional titanium carbides, so-called MXenes, are being discussed as candidates for the rapid storage of electrical energy. Like a battery,MXenes can store large amounts of electrical energy through electrochemical reactions- but unlike batteries,can be charged and discharged in a matter of seconds. In collaboration with Drexel University, a team at HZB showed that the intercalation of urea molecules between the MXene layers can increase the capacity of such "pseudo-capacitors" by more than 50 percent. At BESSY II they have analysed how changes of the MXene surface chemistry after urea intercalation are responsible for this.

There are different solutions for storing electrical energy: Lithium-based electrochemical batteries, for example, store large amounts of energy, but require long charging times. Supercapacitors, on the other hand, are able to absorb or release electrical energy extremely quickly - but store much less electrical energy.

Pseudocapacitors MXene

A further option is on the horizon since 2011: A new class of 2D materials that could store enormous amounts of charge was discovered at Drexel University, USA. These were so-called MXenes, Ti3C2Tx nanosheets that form a two-dimensional network together, similar to graphene. While titanium (Ti) and carbon (C) are elements, Tx describes different chemical groups that seal the surface, for example OH-groups. MXenes are highly conductive materials with hydrophilic surfaces and can form dispersions resembling black ink, composed of stacked layered particles in water.

Ti3C2Tx MXene can store as much energy as batteries, but can be charged or discharged within tens of seconds. While similarly fast (or faster) supercapacitors absorb their energy by electrostatic adsorption of electrical charges, the energy is stored in chemical bonds at the surface of MXenes. Energy storage is therefore much more efficient.

New insights into chemistry by soft X-ray methods

In cooperation with the group of Yuri Gogotsi at Drexel University, the HZB scientists Dr. Tristan Petit and Ameer Al-Temimy have now for the first time used soft X‑ray absorption spectroscopy to investigate MXene samples at two experimental stations LiXEdrom and X-PEEM at BESSY II. With these methods, the chemical environment of MXene surface groups was analyzed over individual MXene flakes in vacuum but also directly in water environment. They found dramatic differences between pristine MXenes and MXenes between which urea molecules were intercalated.

Urea increases the capacity

The presence of urea molecules also significantly changes the electrochemical properties of MXenes. The area capacity increased to 1100 mF/cm2, which is 56 percent higher than pristineTi3C2Tx electrodes prepared similarly. The XAS analyses at BESSY II showed that surface chemistry is changed by the presence of the urea molecules. "We could also observe the oxidation state of the Ti atoms on the Ti3C2Tx MXene surfaces by using X-PEEM. This oxidation state was higher with the presence of urea which may facilitate to store more energy" says Ameer Al-Temimy, who performed the measurements as part of his doctorate.

J. Phys. Chem. C 2020: Enhancement of Ti3C2 MXene Pseudocapacitance After Urea Intercalation Studied by Soft X-ray Absorption Spectroscopy, Ameer Al-Temimy, Babak Anasori, Katherine A. Mazzio, Florian Kronast, Mykola Seredych, Narendra Kurra, Mohamad-Assaad Mawass, Simone Raoux, Yury Gogotsi, and Tristan Petit  

DOI: 10.1021/acs.jpcc.9b11766

arö

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • Bernd Rech elected to the BR50 Board of Directors
    News
    30.01.2026
    Bernd Rech elected to the BR50 Board of Directors
    The Scientific Director at Helmholt-Zentrum Berlin is the new face behind the "Natural Sciences" unit at Berlin Research 50 (BR50). Following the election in December 2025, the constituent meeting of the new BR50 Board of Directors took place on 22 January 2026.

    Its members are Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (German Centre for Integration and Migration Research, DeZIM), Volker Haucke (Leibniz Research Institute for Molecular Pharmacology, FMP), Uta Bielfeldt (German Rheumatism Research Centre Berlin, DRFZ) and Bernd Rech (HZB).

  • A record year for our living lab for building-integrated PV
    News
    27.01.2026
    A record year for our living lab for building-integrated PV
    In 2025, our solar facade in Berlin-Adlershof generated more electricity than in any of the previous four years of operation.