BESSY II: Millionenfach schnellerer Wechsel von zirkular polarisierten Lichtpulsen

Dieses Bild zeigt ein Röntgenbild des Elektronenstrahls im TRIB-Modus, bei dem zwei Bahnen koexistieren: die reguläre Bahn und die zweite, die sich um diese Bahn windet und sich erst nach drei Umdrehungen schließt.

Dieses Bild zeigt ein Röntgenbild des Elektronenstrahls im TRIB-Modus, bei dem zwei Bahnen koexistieren: die reguläre Bahn und die zweite, die sich um diese Bahn windet und sich erst nach drei Umdrehungen schließt. © F. Armborst/K. Holldack

</p> <p>Elektronen auf unterschiedlichen Bahnen innerhalb der drei Umdrehungen (blau, rot und gr&uuml;n) durchlaufen unterschiedliche Magnetfeldanordnungen und senden dabei unterschiedlich polarisierte R&ouml;ntgenimpulse aus. Im Vergleich dazu die regul&auml;re Umlaufbahn (schwarz).

Elektronen auf unterschiedlichen Bahnen innerhalb der drei Umdrehungen (blau, rot und grün) durchlaufen unterschiedliche Magnetfeldanordnungen und senden dabei unterschiedlich polarisierte Röntgenimpulse aus. Im Vergleich dazu die reguläre Umlaufbahn (schwarz). © F. Armborst/K. Holldack

Was bringt eine zweite Spur für BESSY II?

02:22

Ein Team aus Beschleunigerphysikern, Undulatorexperten und Experimentatoren hat am Speicherring BESSY II gezeigt, wie sich die Händigkeit (Helizität) von zirkular polarisierter Synchrotronstrahlung schneller umschalten lässt – und zwar bis zu einer Million Mal schneller als bisher. Sie nutzten dazu einen am HZB entwickelten elliptischen Doppel-Undulator und betrieben den Speicherring im sogenannten Two-Orbit-Modus. Dies ist eine besondere Betriebsart, die erst vor kurzem an BESSY II entwickelt wurde und die Basis für die schnelle Umschaltung liefert. Der ultraschnelle Wechsel der Lichthelizität ist vor allem für Untersuchungen von Prozessen in magnetischen Materialien interessant und wird schon seit langem von einer großen Nutzergemeinde erwartet.

In Synchrotronstrahlungsquellen wie BESSY II kreisen Elektronenpakete mit nahezu Lichtgeschwindigkeit im Speicherring. Dabei werden sie durch periodische Magnetstrukturen (Undulatoren) dazu gebracht extrem helle Lichtpulse mit besonderen Eigenschaften abzugeben.

Experimente mit polarisierten Lichtpulsen

Eine dieser Besonderheiten ist die Polarisation: Mit speziellen elliptischen Undulatoren können linear aber auch zirkular polarisierte Lichtpulse erzeugt werden. Magnetische Strukturen in Materialien reagieren unterschiedlich auf zirkular polarisiertes Licht: Je nachdem, ob die Händigkeit (Helizität) der Röntgenpulse rechts- oder linksdrehend ist absorbieren sie diese Strahlung mehr oder weniger. Dies nutzt man seit den 80er Jahren in sogenannten XMCD-Experimenten (X-ray Circular Dichroism) aus, um statische aber auch dynamische Veränderungen in magnetischen Materialien zu untersuchen oder auch magnetische  Nanostrukturen auf Oberflächen abzubilden.

Prozesse in magnetischen Materialien sichtbar machen

Insbesondere für solche abbildenden Verfahren wünscht sich die Nutzergemeinde an Synchrotronstrahlungsquellen seit langem die Möglichkeit die Helizität des Lichts schnell umzuschalten, vor Allem weil sich daraus direkt ein magnetischer Bildkontrast ergibt, der z.B. Bits in magnetischen Datenspeichern sichtbar und quantifizierbar macht.

In den für BESSY II typischen elliptischen Undulatoren (APPLE II), die von der Gruppe um Johannes Bahrdt entwickelt wurden, wird die Helizität des Lichtes durch eine mechanische Verschiebung von meterlangen Anordnungen von starken Permanentmagneten geschaltet, ein Vorgang, der teilweise Minuten dauert.

Zwei Orbits nutzen

Die neue Methode basiert dagegen auf der Kombination solcher Undulatoren mit einem speziellen Orbit des Elektronenstrahls im Speicherring - der durch die sogenannten TRIBs (transverse resonance island buckets) erzeugt wird. Die TRIBs hatte der HZB-Beschleunigerexperte Dr. Paul Goslawski erstmals an BESSY II experimentell untersucht. Während der Weg der Elektronen im Speicherring sich normalerweise nach einem Umlauf schließt, laufen im TRIBs-Modus die Elektronen bei aufeinanderfolgenden Umläufen auf verschiedenen Bahnen und können so Röntgenpulse von jeweils anderen Magnetfeldanordnungen emittieren. Diese Idee geht auf Dr. Karsten Holldack und Dr. Johannes Bahrdt zurück.

Doppelundulator im TRIBs-Modus

Dass sie tatsächlich funktioniert, konnten Holldack und Bahrdt kürzlich mit Hilfe des vorhandenen Doppelundulators UE56-2 bei BESSY II im Rahmen eines Pilotexperimentes: zeigen: Beim Durchgang durch eine speziell vorbereitete Magnetanordnung dieses Doppel-Undulators gaben in der Tat die Elektronenpakete aus unterschiedlichen Bahnen im TRIBs-Modus Röntgenphotonen mit derselben Wellenlänge aber entgegengesetzter zirkularer Polarisation ab.

Helizität wechselt Millionen Mal pro Sekunde

Dadurch können nun prinzipiell XMCD-Signale von magnetischen Proben im Zeitabstand von nur einer Mikrosekunde mit abwechselnd rechts- und dann linkszirkular polarisierten Lichtpulsen untersucht werden. Im Pilotexperiment wurden die XMCD-Signale von einer magnetischen Probe (Nickel in Permalloy) von Umlauf zu Umlauf detektiert und der schnelle (MHz) Helizitätswechsel konnte eindeutig nachgewiesen werden.

Ausblick: Noch höhere Zeitauflösung und BESSY III

Mit neuen, für diesen Zweck maßgeschneiderten, Undulatoren könnten bei BESSY II im TRIBs-Modus spezielle Beamlines mit ultraschnellem Helizitätswechsel angeboten werden. Perspektisch sind sogar Wechsel im Nanosekundenabstand denkbar. „Dass die TRIBs-Entwicklung mit den Two-Orbits jetzt auch noch ganz neue Experimente an BESSY II ermöglicht, freut uns sehr“, sagt Goslawski. Dies wäre aber auch eine attraktive Option für BESSY III. Die Ergebnisse wurden nun bei Nature Communications Physics veröffentlicht.

Publiziert in Nature Communications Physics (2020): Flipping helicity of X-rays from an undulator at unprecedented speed

Karsten Holldack, Christian Schüßler-Langeheine, Paul Goslawski, Niko Pontius, Torsten Kachel, Felix Armborst, Markus Ries, Andreas Schälicke, Michael Scheer, Winfried Frentrup and Johannes Bahrdt

DOI : 10.1038/s42005-020-0331-5

arö


Das könnte Sie auch interessieren

  • Dynamische Messungen in Flüssigkeiten jetzt auch im Labor
    Science Highlight
    23.05.2024
    Dynamische Messungen in Flüssigkeiten jetzt auch im Labor
    Ein Team aus Berliner Forscher*innen hat ein Laborspektrometer entwickelt, um chemische Prozesse in Lösung zu analysieren – und das mit 500 ps Zeitauflösung. Dies ist nicht nur für die Forschung an molekularen Prozessen in der Biologie interessant, sondern auch für die Entwicklung von neuartigen Katalysatormaterialien. Bisher war dafür allerdings meist Synchrotronstrahlung erforderlich, wie sie nur an großen, modernen Röntgenquellen wie BESSY II zur Verfügung steht. Nun funktioniert das Verfahren mit einer Plasmalichtquelle im Labormaßstab.
  • Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Science Highlight
    21.05.2024
    Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Forscher*innen der Bundesanstalt für Materialforschung und -prüfung (BAM) und der Freien Universität Berlin haben erstmals den genauen Mechanismus des Simons-Prozesses entschlüsselt. Das interdisziplinäre Forschungsteam nutzte dafür die Synchrotronquelle BESSY II am Helmholtz-Zentrum Berlin.

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.