BESSY II: Millionenfach schnellerer Wechsel von zirkular polarisierten Lichtpulsen

Dieses Bild zeigt ein Röntgenbild des Elektronenstrahls im TRIB-Modus, bei dem zwei Bahnen koexistieren: die reguläre Bahn und die zweite, die sich um diese Bahn windet und sich erst nach drei Umdrehungen schließt.

Dieses Bild zeigt ein Röntgenbild des Elektronenstrahls im TRIB-Modus, bei dem zwei Bahnen koexistieren: die reguläre Bahn und die zweite, die sich um diese Bahn windet und sich erst nach drei Umdrehungen schließt. © F. Armborst/K. Holldack

</p> <p>Elektronen auf unterschiedlichen Bahnen innerhalb der drei Umdrehungen (blau, rot und gr&uuml;n) durchlaufen unterschiedliche Magnetfeldanordnungen und senden dabei unterschiedlich polarisierte R&ouml;ntgenimpulse aus. Im Vergleich dazu die regul&auml;re Umlaufbahn (schwarz).

Elektronen auf unterschiedlichen Bahnen innerhalb der drei Umdrehungen (blau, rot und grün) durchlaufen unterschiedliche Magnetfeldanordnungen und senden dabei unterschiedlich polarisierte Röntgenimpulse aus. Im Vergleich dazu die reguläre Umlaufbahn (schwarz). © F. Armborst/K. Holldack

Was bringt eine zweite Spur für BESSY II?

02:22

Ein Team aus Beschleunigerphysikern, Undulatorexperten und Experimentatoren hat am Speicherring BESSY II gezeigt, wie sich die Händigkeit (Helizität) von zirkular polarisierter Synchrotronstrahlung schneller umschalten lässt – und zwar bis zu einer Million Mal schneller als bisher. Sie nutzten dazu einen am HZB entwickelten elliptischen Doppel-Undulator und betrieben den Speicherring im sogenannten Two-Orbit-Modus. Dies ist eine besondere Betriebsart, die erst vor kurzem an BESSY II entwickelt wurde und die Basis für die schnelle Umschaltung liefert. Der ultraschnelle Wechsel der Lichthelizität ist vor allem für Untersuchungen von Prozessen in magnetischen Materialien interessant und wird schon seit langem von einer großen Nutzergemeinde erwartet.

In Synchrotronstrahlungsquellen wie BESSY II kreisen Elektronenpakete mit nahezu Lichtgeschwindigkeit im Speicherring. Dabei werden sie durch periodische Magnetstrukturen (Undulatoren) dazu gebracht extrem helle Lichtpulse mit besonderen Eigenschaften abzugeben.

Experimente mit polarisierten Lichtpulsen

Eine dieser Besonderheiten ist die Polarisation: Mit speziellen elliptischen Undulatoren können linear aber auch zirkular polarisierte Lichtpulse erzeugt werden. Magnetische Strukturen in Materialien reagieren unterschiedlich auf zirkular polarisiertes Licht: Je nachdem, ob die Händigkeit (Helizität) der Röntgenpulse rechts- oder linksdrehend ist absorbieren sie diese Strahlung mehr oder weniger. Dies nutzt man seit den 80er Jahren in sogenannten XMCD-Experimenten (X-ray Circular Dichroism) aus, um statische aber auch dynamische Veränderungen in magnetischen Materialien zu untersuchen oder auch magnetische  Nanostrukturen auf Oberflächen abzubilden.

Prozesse in magnetischen Materialien sichtbar machen

Insbesondere für solche abbildenden Verfahren wünscht sich die Nutzergemeinde an Synchrotronstrahlungsquellen seit langem die Möglichkeit die Helizität des Lichts schnell umzuschalten, vor Allem weil sich daraus direkt ein magnetischer Bildkontrast ergibt, der z.B. Bits in magnetischen Datenspeichern sichtbar und quantifizierbar macht.

In den für BESSY II typischen elliptischen Undulatoren (APPLE II), die von der Gruppe um Johannes Bahrdt entwickelt wurden, wird die Helizität des Lichtes durch eine mechanische Verschiebung von meterlangen Anordnungen von starken Permanentmagneten geschaltet, ein Vorgang, der teilweise Minuten dauert.

Zwei Orbits nutzen

Die neue Methode basiert dagegen auf der Kombination solcher Undulatoren mit einem speziellen Orbit des Elektronenstrahls im Speicherring - der durch die sogenannten TRIBs (transverse resonance island buckets) erzeugt wird. Die TRIBs hatte der HZB-Beschleunigerexperte Dr. Paul Goslawski erstmals an BESSY II experimentell untersucht. Während der Weg der Elektronen im Speicherring sich normalerweise nach einem Umlauf schließt, laufen im TRIBs-Modus die Elektronen bei aufeinanderfolgenden Umläufen auf verschiedenen Bahnen und können so Röntgenpulse von jeweils anderen Magnetfeldanordnungen emittieren. Diese Idee geht auf Dr. Karsten Holldack und Dr. Johannes Bahrdt zurück.

Doppelundulator im TRIBs-Modus

Dass sie tatsächlich funktioniert, konnten Holldack und Bahrdt kürzlich mit Hilfe des vorhandenen Doppelundulators UE56-2 bei BESSY II im Rahmen eines Pilotexperimentes: zeigen: Beim Durchgang durch eine speziell vorbereitete Magnetanordnung dieses Doppel-Undulators gaben in der Tat die Elektronenpakete aus unterschiedlichen Bahnen im TRIBs-Modus Röntgenphotonen mit derselben Wellenlänge aber entgegengesetzter zirkularer Polarisation ab.

Helizität wechselt Millionen Mal pro Sekunde

Dadurch können nun prinzipiell XMCD-Signale von magnetischen Proben im Zeitabstand von nur einer Mikrosekunde mit abwechselnd rechts- und dann linkszirkular polarisierten Lichtpulsen untersucht werden. Im Pilotexperiment wurden die XMCD-Signale von einer magnetischen Probe (Nickel in Permalloy) von Umlauf zu Umlauf detektiert und der schnelle (MHz) Helizitätswechsel konnte eindeutig nachgewiesen werden.

Ausblick: Noch höhere Zeitauflösung und BESSY III

Mit neuen, für diesen Zweck maßgeschneiderten, Undulatoren könnten bei BESSY II im TRIBs-Modus spezielle Beamlines mit ultraschnellem Helizitätswechsel angeboten werden. Perspektisch sind sogar Wechsel im Nanosekundenabstand denkbar. „Dass die TRIBs-Entwicklung mit den Two-Orbits jetzt auch noch ganz neue Experimente an BESSY II ermöglicht, freut uns sehr“, sagt Goslawski. Dies wäre aber auch eine attraktive Option für BESSY III. Die Ergebnisse wurden nun bei Nature Communications Physics veröffentlicht.

Publiziert in Nature Communications Physics (2020): Flipping helicity of X-rays from an undulator at unprecedented speed

Karsten Holldack, Christian Schüßler-Langeheine, Paul Goslawski, Niko Pontius, Torsten Kachel, Felix Armborst, Markus Ries, Andreas Schälicke, Michael Scheer, Winfried Frentrup and Johannes Bahrdt

DOI : 10.1038/s42005-020-0331-5

arö

Das könnte Sie auch interessieren

  • Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Science Highlight
    22.11.2022
    Quanten-Algorithmen sparen Zeit bei der Berechnung von Elektronendynamik
    Quantencomputer versprechen erheblich kürzere Rechenzeiten für komplexe Probleme. Aber noch gibt es weltweit nur wenige Quantencomputer mit einer begrenzten Anzahl so genannter Qubits. Quantencomputer-Algorithmen können aber auch auf konventionellen Servern laufen, die einen Quantencomputer simulieren. Ein HZB-Team hat damit nun am Beispiel eines kleinen Moleküls dessen Elektronenorbitale und ihre dynamische Entwicklung nach einer Laserpulsanregung berechnet. Die Methode eignet sich auch, um größere Moleküle zu untersuchen, die mit konventionellen Methoden nicht mehr berechnet werden können.
  • Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Science Highlight
    17.11.2022
    Wie sich Photoelektroden im Kontakt mit Wasser verändern
    Photoelektroden auf der Basis von BiVO4 gelten als Top-Kandidaten für die solare Wasserstofferzeugung. Doch was passiert eigentlich, wenn sie mit Wassermolekülen in Kontakt kommen? Eine Studie im Journal of the American Chemical Society hat diese entscheidende Frage nun teilweise beantwortet: Überschüssige Elektronen aus dotierten Fremdelementen oder Defekten fördern die Dissoziation von Wasser, was wiederum sogenannte Polaronen an der Oberfläche stabilisiert. Dies zeigen Daten aus Experimenten eines HZB-Teams an der Advanced Light Source des Lawrence Berkeley National Laboratory. Die Ergebnisse könnten dazu beitragen, bessere Photoanoden für die grüne Wasserstoffproduktion zu entwickeln.
  • BESSY II: Einfluss von Protonen auf Wassermoleküle
    Science Highlight
    10.11.2022
    BESSY II: Einfluss von Protonen auf Wassermoleküle
    Wie Wasserstoff-Ionen oder Protonen mit ihrer wässrigen Umgebung wechselwirken, hat große Praxisrelevanz, ob in der Technologie von Brennstoffzellen oder in den Lebenswissenschaften. Nun hat ein großes internationales Konsortium an der Röntgenquelle BESSY II diese Frage experimentell im Detail untersucht und neue Effekte entdeckt. So verändert die Anwesenheit eines Protons die elektronische Struktur der drei innersten Wassermoleküle, wirkt sich aber außerdem auch noch darüber hinaus über ein langreichweitiges Feld auf eine Hydrathülle aus fünf weiteren Wassermolekülen aus.