BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses

This picture shows an X-ray image of the electron beam in TRIB-mode where two orbits co-exist: the regular orbit and the second one winding around it closing only after three revolutions.</p> <p>&nbsp;</p> <p>

This picture shows an X-ray image of the electron beam in TRIB-mode where two orbits co-exist: the regular orbit and the second one winding around it closing only after three revolutions.

 

© F. Armborst/K. Holldack

Electrons on different orbits during the three revolutions (blue, red and green) pass through different magnetic field arrangements and thus emit differently polarized X-ray pulses. In comparison the regular orbit (black).

Electrons on different orbits during the three revolutions (blue, red and green) pass through different magnetic field arrangements and thus emit differently polarized X-ray pulses. In comparison the regular orbit (black). © F. Armborst/K. Holldack

What's the point of a second orbit for BESSY II?

02:22

At the BESSY II storage ring, a joint team of accelerator physicists, undulator experts and experimenters has shown how the helicity of circularly polarized synchrotron radiation can be switched faster - up to a million times faster than before. They used an elliptical double-undulator developed at HZB and operated the storage ring in the so-called two-orbit mode. This is a special mode of operation that was only recently developed at BESSY II and provides the basis for fast switching. The ultra-fast change of light helicity is particularly interesting to observe processes in magnetic materials and has long been expected by a large user community.

In synchrotron radiation sources such as BESSY II, electron bunches orbit the storage ring at almost the speed of light. They are forced to emit extremely bright light pulses with special properties by periodic magnetic structures (undulators).

Experiments with polarized light pulses

Elliptical undulators can be used to generate also circularly polarized light pulses, which display a feature called helicity: the polarisation goes either clockwise or counterclockwise. Magnetic structures in materials react differently to circularly polarized light: Depending on the helicity of the X-ray pulses, they more or less absorb this radiation.

Since the 1980s, this has been exploited in so-called XMCD (X-ray Circular Dichroism) experiments to investigate static and dynamic changes in magnetic materials or to image magnetic nanostructures on surfaces.

Mapping dynamics in magnetic materials

Especially for such imaging techniques, the user community at synchrotron radiation sources has long wished for the possibility to quickly switch the helicity of the light, mainly because this directly results in a magnetic image contrast that makes bits in magnetic data storage devices visible and quantifiable.

In the elliptical undulators typical for BESSY II (APPLE II), developed by the group around Johannes Bahrdt, the helicity of light is switched by a mechanical displacement of meter-long arrangements of strong permanent magnets, a process that sometimes takes up to minutes.

Two orbits

The new method, however, is based on the combination of such undulators with a special orbit of the electron beam in the storage ring - generated by the so-called TRIBs (transverse resonance island buckets). TRIBs have been experimentally explored by the accelerator expert Dr. Paul Goslawski at BESSY II. While the path of the electrons in the storage ring normally closes after one orbit, in the TRIBs mode the electrons run on different orbits during successive orbits and can thus emit X-ray pulses from different magnetic field configurations, suggested Dr. Karsten Holldack and Dr. Johannes Bahrdt.

And it works

They were recently able to show that their idea actually works with the help of the existing double undulator UE56-2 at BESSY II in a pilot experiment: When passing through a specially prepared magnet arrangement of this double undulator, the electron bunches from different orbits in TRIBs mode emitted X-ray photons with the same wavelength but opposite circular polarization.

Switching a million times per second

Thus, in principle, XMCD signals from magnetic samples can now be studied at intervals of only 1 microsecond with right- and then left-circularly polarized light pulses. In the pilot experiment the XMCD signals from a magnetic sample (nickel in permalloy) were detected from revolution to revolution and the fast (MHz) helicity change could be clearly demonstrated. With new undulators tailored for this purpose, special beamlines with ultrafast helicity change could be offered at BESSY II in TRIBs mode. Ultimately switching times could shrink to nanoseconds.

Outlook: BESSY III

”We are really delighted that the Two-Orbit / TRIBs development allows now already new experiments at BESSY II”, Goslawski says. This would also be an attractive option for BESSY III. The results have now been published in Nature Communications Physics.

Published in Nature Communications Physics (2020): Flipping helicity of X-rays from an undulator at unprecedented speed

Karsten Holldack, Christian Schüßler-Langeheine, Paul Goslawski, Niko Pontius, Torsten Kachel, Felix Armborst, Markus Ries, Andreas Schälicke, Michael Scheer, Winfried Frentrup and Johannes Bahrdt

DOI : 10.1038/s42005-020-0331-5

arö


You might also be interested in

  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.
  • BESSY II: Molecular orbitals determine stability
    Science Highlight
    07.02.2024
    BESSY II: Molecular orbitals determine stability
    Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.