Neutronenforschung: Magnetische Monopole in Kagome-Spin-Eis-Systemen nachgewiesen

In HoAgGe besetzten Holmium-Spins die Ecken von Dreiecken, die zu einem Kagome-Muster geordnet sind. Die Ausrichtung benachbarter Spins (links, rote Pfeile) muss dabei der Eisregel gehorchen: Entweder ragen zwei Spins in ein Dreieck hinein und eins hinaus oder umgekehrt. Als Resultat verhalten sich die einzelnen Dreiecke, als wären sie magnetische Monopole (rechts).

In HoAgGe besetzten Holmium-Spins die Ecken von Dreiecken, die zu einem Kagome-Muster geordnet sind. Die Ausrichtung benachbarter Spins (links, rote Pfeile) muss dabei der Eisregel gehorchen: Entweder ragen zwei Spins in ein Dreieck hinein und eins hinaus oder umgekehrt. Als Resultat verhalten sich die einzelnen Dreiecke, als wären sie magnetische Monopole (rechts). © Uni Augsburg

Magnetische Monopole sind eigentlich unmöglich. Bei tiefen Temperaturen können sich jedoch in bestimmten Kristallen so genannte Quasiteilchen zeigen, die sich wie magnetische Monopole verhalten. Nun hat eine internationale Kooperation nachgewiesen, dass solche Monopole auch in einem Kagome-Spin-Eis-System auftreten. Ausschlaggebend waren unter anderem auch Messungen mit inelastischer Neutronenstreuung am Instrument NEAT der Berliner Neutronenquelle BER II*. Die Ergebnisse sind in der Fachzeitschrift Science erschienen.

Magnetische Monopole wurden weltweit erstmals 2008 an der Berliner Neutronenquelle nachgewiesen. Damals handelte es sich um ein dreidimensionales Spinsystem in einer Dysprosium-Verbindung. Vor rund 10 Jahren konnten Monopol-Quasiteilchen auch in zwei-dimensionalen Spin-Eis-Materialien nachgewiesen werden, die aus tetraedrischen Kristall-Einheiten bestanden. Diese Spin-Eis-Materialien waren jedoch elektrische Isolatoren.

Kooperation zeigt: auch metallische Proben zeigen Monopole

Dr. Kan Zhao und Prof. Philipp Gegenwart von der Universität Augsburg haben nun zusammen mit Teams aus dem Heinz-Meier-Leibnitz-Zentrum, dem Forschungszentrum Jülich, der University of Colorado, der Akademie der Wissenschaften in Prag sowie dem Helmholtz-Zentrum Berlin erstmals gezeigt, dass auch eine metallische Verbindung solche magnetischen Monopole ausbilden kann. Das Team in Augsburg stellte dafür kristalline Proben aus den Elementen Holmium, Silber und Germanium her. In den HoAgGe-Kristallen bilden die magnetischen Momente (Spins) der Holmium-Atome ein so genanntes zweidimensionales Kagome-Muster. Dieser Name kommt von der japanischen Kagome-Flechtkunst, bei der die Flechtbänder nicht rechtwinklig miteinander verwoben sind, sondern so, dass sich dreieckige Muster bilden.

Kagome-Spin-Eis: Frustration für die Spins

Im Kagome-Muster können sich die Spins benachbarter Atome nicht wie üblich jeweils gegenläufig zueinander ausrichten. Stattdessen gibt es zwei zulässige Spin-Konfigurationen: Entweder zeigen die Spins von zwei der drei Atome genau zum Dreiecks-Zentrum, die des dritten dagegen aus dem Zentrum heraus. Oder es ist genau umgekehrt: Ein Spin zeigt zum Zentrum, die beiden anderen aus ihm heraus. Dies beschränkt die Möglichkeiten der Spin-Anordnungen – daher auch der Name „Kagome-Spin-Eis.“ Eine Folge davon ist, dass sich dieses System so verhält, als ob in ihm magnetische Monopole vorliegen würden.

Kagome-Spin-Eis in realem System beobachtet

Dieses Verhalten konnte nun die Kooperation um die Augsburger Forscher erstmals auch experimentell in HoAgGe-Kristallen nachweisen. Sie kühlten die Proben stark ab und untersuchten sie unter verschieden starken, äußeren Magnetfeldern. Einen Teil der Experimente führten die Wissenschaftler am Heinz Maier-Leibnitz Zentrum in Garching bei München durch. Dabei wurden sie von der Abteilung Probenumgebung des HZB unterstützt, die einen supraleitenden Kryomagneten für die Experimente am FRM-II zur Verfügung stellte.

Energiespektrum am NEAT des BER II

So konnten sie unterschiedliche Spin-Anordnungen erzeugen, die in einem Kagome-Spin-Eis erwartet werden. Modellrechnungen aus dem Augsburger Forschungsteam zeigten, wie das Energiespektrum der Spins aussehen sollte. Dieses Energiespektrum der Spins konnte dann mit der Methode der inelastischen Neutronenstreuung am Instrument NEAT an der Berliner Neutronenquelle vermessen werden. „Das war der letzte Baustein für den Nachweis der magnetischen Monopole in diesem System. Die Übereinstimmung mit den theoretisch vorhergesagten Spektren ist wirklich sehr groß“ sagt Dr. Margarita Russina, die am HZB für das NEAT-Instrument verantwortlich ist.

Die Arbeit wurde in Science (2020) publiziert:

FRUSTRATED MAGNETISM - Realization of the kagome spin ice state in a frustrated intermetallic compound; Kan Zhao, Hao Deng, Hua Chen, Kate A. Ross, Vaclav Petricek, Gerrit Günther, Margarita Russina, Vladimir Hutanu, Philipp Gegenwart

DOI: 10.1126/science.aaw1666

* Die Berliner Neutronenquelle wurde im Dezember nach 46 Jahren erfolgreichen Betriebs 2019 planmäßig abgeschaltet. Bis dahin wurde die Messzeit optimal für die Forschung genutzt.

arö

Das könnte Sie auch interessieren

  • Internationales Konsortium will die Dekarbonisierung der Luftfahrt vorantreiben
    Nachricht
    24.05.2022
    Internationales Konsortium will die Dekarbonisierung der Luftfahrt vorantreiben
    JOHANNESBURG, Südafrika, 24. Mai 2022:  Im Forschungsprojekt CARE-O-SENE entwickeln Partner aus Deutschland und Südafrika neue Katalysatoren für grüne Flugtreibstoffe.

    Das Unternehmen Sasol und das Helmholtz-Zentrum Berlin (HZB) werden ein Konsortium leiten, das Katalysatoren der nächsten Generation entwickeln und optimieren will. Diese spielen eine Schlüsselrolle für die Entwicklung nachhaltiger Flugtreibstoffe (sustainable aviation fuels - SAF) und sind Grundlage für einen nachhaltigen Luftfahrtsektor.

  • Wärmedämmung für Quantentechnologien
    Science Highlight
    19.05.2022
    Wärmedämmung für Quantentechnologien
    Neue energieeffiziente IT-Bauelemente arbeiten häufig nur bei extrem tiefen Temperaturen stabil. Daher kommt es entscheidend auf eine sehr gute Wärmeisolierung solcher Elemente an, was die Entwicklung von Materialien mit extrem niedriger Wärmeleitfähigkeit erfordert. Ein Team am HZB hat nun mit einem neuartigen Sinterverfahren nanoporöse Silizium-Aluminium-Proben hergestellt, in welchen Poren und Nanokristallite den Transport von Wärme behindern und so die Wärmeleitfähigkeit drastisch reduzieren. Die Forschenden haben ein Modell für die Vorhersage der Wärmeleitfähigkeit entwickelt, das anhand von Messdaten zur Mikrostruktur der Proben und deren Wärmeleitfähigkeit bestätigt wurde. Damit liegt erstmals eine Methode für die gezielte Entwicklung von komplexen porösen Materialien mit ultraniedriger Wärmeleitfähigkeit vor.
  • Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Science Highlight
    17.05.2022
    Magnetische Nanopartikel in biologischen Trägern einzeln charakterisiert
    Magnetische Nanostrukturen sind vielversprechende Werkzeuge für medizinische Anwendungen. Eingebaut in biologische Vehikel, lassen sich diese dann durch externe Magnetfelder an ihren Einsatzort im Körper steuern, wo sie Medikamente freisetzen oder Krebszellen zerstören können. Dazu ist jedoch die genaue Kenntnis der magnetischen Eigenschaften solcher Nanoteilchen nötig. Bisher konnten solche Informationen nur gemittelt über tausende Nanopartikel gewonnen werden. Nun hat ein Team am HZB eine Methode entwickelt, um die charakteristischen Parameter jedes einzelnen magnetischen Nanopartikels zu bestimmen.