Tandem solar cell world record: New branch in the NREL chart

The CIGS-Pero tandem cell was realised in a typical lab size of 1 square centimeter.

The CIGS-Pero tandem cell was realised in a typical lab size of 1 square centimeter. © HZB

The Pero CIGS tandem cells are now shown in the NREL chart (red square dots). The world record is currently held by the HZB with 24.16 %.

The Pero CIGS tandem cells are now shown in the NREL chart (red square dots). The world record is currently held by the HZB with 24.16 %. © NREL

A special branch in the famous NREL-chart for solar cell world records refers to a newly developed tandem solar cell by HZB teams. The world-record cell combines the semiconductors perovskite and CIGS to a monolithic "two-terminal" tandem cell. Due to the thin-film technologies used, such tandem cells survive much longer in space and can even be produced on flexible films. The new tandem cell achieves a certified efficiency of 24.16 percent.

Tandem cells combine two different semiconductors that convert different parts of the light spectrum into electrical energy. Metal-halide perovskite compounds mainly use the visible parts of the spectrum, while CIGS semiconductors convert rather the infrared light. CIGS cells, which consist of copper, indium, gallium and selenium, can be deposited as thin-films with a total thickness of only 3 to 4 micrometers; the perovskite layers are even much thinner at 0.5 micrometers. The new tandem solar cell made of CIGS and perovskite thus has a thickness of well below 5 micrometers, which would allow the production of flexible solar modules.

Suitable for applications in space

"This combination is also extremely light weight and stable against irradiation, and could be suitable for applications in satellite technology in space", says Prof. Dr. Steve Albrecht, HZB. These results, obtained in a big collaboration, have been just published in the renowned journal JOULE.

Extremely thin and efficient

"This time, we have connected the bottom cell (CIGS) directly with the top cell (perovskite), so that the tandem cell has only two electrical contacts, so-called terminals", explains Dr. Christian Kaufmann from PVcomB at HZB, who developed the CIGS bottom cell with his team and he adds "Especially the introduction of rubidium has significantly improved the CIGS absorber material".

Improving the contact

Albrecht and his team have deposited in the HySPRINT lab at HZB the perovskite layer directly on the rough CIGS layer. "We used a trick that we had previously developed," explains former postdoc from Albrecht's group Dr. Marko Jošt, who is now a scientist at the University of Ljubjana, Slovenia. They applied so-called SAM molecules to the CIGS layer, which form a self-organised monomolecular layer, improving the contact between perovskite and CIGS.

Certified efficiency: 24.16 percent

The new perovskite CIGS tandem cell achieves an efficiency of 24.16 percent. This value has been officially certified by the CalLab of the Fraunhofer Institute for Solar Energy Systems (ISE).

NREL-Chart

Since such "2 Terminal" tandem cells made of CIGS and perovskite now represent a separate category, the National Renewable Energy Lab NREL, USA, has created a new branch on the famous NREL chart for this purpose. This chart shows the development of efficiencies for almost all solar cell types since 1976. Perovskite compounds have only been included since 2013 - the efficiency of this material class has increased more steeply than any other material.

Prof. Dr. Steve Albrecht heads a BMBF-funded junior research group at HZB and is a junior professor at the Technical University of Berlin. Dr. Christian Kaufmann heads a research group at HZB's PVcomB.  Recently, several world records for tandem solar cells made of perovskite in combination with inorganic semiconductors have been reported from HZB.Currently, Albrecht's team also holds the world record for tandem cells made of silicon and perovskite with 29.1 percent, which is also listed in the NREL charts.

arö


You might also be interested in

  • Chilean President visits Helmholtz-Zentrum Berlin
    News
    12.06.2024
    Chilean President visits Helmholtz-Zentrum Berlin
    The President of Chile, Gabriel Boric Font, visited HZB on Tuesday with a delegation of 50 people. Among the highlights of the evening were the signing of a Memorandum of Understanding between the Chilean Corporation for the Promotion of Production (CORFO) and HZB and a visit to BESSY II light source.
  • Key role of nickel ions in the Simons process discovered
    Science Highlight
    21.05.2024
    Key role of nickel ions in the Simons process discovered
    Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

  • Watching indium phosphide at work
    Science Highlight
    15.05.2024
    Watching indium phosphide at work
    Indium phosphide is a versatile semiconductor. The material can be used for solar cells, for hydrogen production and even for quantum computers – and with record-breaking efficiency. However, little research has been conducted into what happens on its surface. Researchers have now closed this gap and used ultra-fast lasers to scrutinise the dynamics of the electrons in the material.