Neue Wechselwirkung zwischen Licht und Materie an BESSY II entdeckt

Ein gebündelter weicher Röntgenstrahl mit einem Durchmesser von weniger als 50 Nanometern schreibt zahlreiche Magnetwirbel, die zusammen en Begriff „MPI-IS“ ergeben.

Ein gebündelter weicher Röntgenstrahl mit einem Durchmesser von weniger als 50 Nanometern schreibt zahlreiche Magnetwirbel, die zusammen en Begriff „MPI-IS“ ergeben. © Alejandro Posada, Felix Groß/MPI-IS

Ein deutsch-chinesisches Team um Gisela Schütz vom MPI für Intelligente Systeme hat an BESSY II eine neue Wechselwirkung zwischen Licht und Materie entdeckt. Es gelang ihnen damit, nanometerfeine magnetische Wirbel in einer magnetischen Schicht zu erzeugen. Dabei handelt es sich um so genannte Skyrmionen, die für künftige Informationstechnologien interessant sind.

Skyrmionen sind 100 Nanometer kleine dreidimensionale Strukturen, die in magnetischen Materialien vorkommen. Sie ähneln kleinen Spulen: atomare Elementarmagnete – sogenannte Spins –, die sich in geschlossenen Wirbelstrukturen anordnen. Skyrmionen sind topologisch geschützt, d. h. in ihrer Form unveränderbar und gelten daher als energieeffiziente Datenspeicher.

Weiches Röntgenlicht an BESSY II

In einer Reihe von Experimenten an der MAXYMUS-Beamline von BESSY II zeigten die Forschenden nun, dass ein gebündelter weicher Röntgenstrahl mit einem Durchmesser von weniger als 50 Nanometern einen Magnetwirbel von 100 Nanometern hervorbringen kann. Um die Skyrmionen sichtbar zu machen, nutzen die Forschenden das Rastertransmissions-Röntgenmikroskop MAXYMUS. Dabei handelt es sich um ein hochauflösendes Röntgenmikroskop, 1,8 Tonnen schwer, das an BESSY II angesiedelt ist.

Entdeckung durch glücklichen Zufall

Diese Entdeckung verdankt sich einem Zufall, denn bisher war diese Art der Interaktion zwischen Licht und Materie völlig unbekannt. „Wir wissen nicht, wie Licht Materie schreibt“, sagt Dr. Joachim Gräfe, Leiter der Forschungsgruppe Nanomagnonik und Magnetisierungsdynamik am MPI-IS. Er ist einer der Hauptautoren der Studie, die im Februar in Nature communications veröffentlicht wurde. „Wir können bestimmte Eigenschaften phänomenologisch beschreiben. Wir wissen, dass es mit dem Röntgenstrahl zu tun hat. Es ist nicht nur ein Energieeintrag wie Wärme, der das Skyrmion schreibt. Es ist wirklich ein resonanter Effekt: wir können die Atome, die für den Magnetismus verantwortlich sind, direkt anregen.“ So konnten er und sein Team „MPI-IS“ schreiben (siehe Abbildung).

Ausblick: Spintronische Datenträger

Die Ergebnisse sind insbesondere für die Entwicklung und Herstellung sogenannter spintronischer Datenträger relevant, die Informationen in Skyrmionen speichern. Sie gelten als energieeffizient und wenig störanfällig. Doch nur, wenn Skyrmione präzise und passgenau kreiert werden können – und das ist nun erstmals möglich geworden – kann diese Entwicklung ihren Lauf nehmen. „Unser Ziel ist es, dass Röntgenstrahlen in Zukunft als Werkzeug dienen, um die Anordnung magnetischer Strukturen zu bestimmen bzw. zu schreiben.“

red/MPI-IS

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe.