New interaction between light and matter discovered at BESSY II

A bundled soft X-ray beam with a diameter of less than 50 nanometers writes numerous magnetic vortices, which together form the term "MPI-IS".

A bundled soft X-ray beam with a diameter of less than 50 nanometers writes numerous magnetic vortices, which together form the term "MPI-IS". © Alejandro Posada, Felix Groß/MPI-IS

A German-Chinese team led by Gisela Schütz from the MPI for Intelligent Systems has discovered a new interaction between light and matter at BESSY II. They succeeded in creating nanometer-fine magnetic vortices in a magnetic layer. These are so-called skyrmions, and candidates for future information technologies.

Skyrmions are 100 nanometre small three-dimensional structures that occur in magnetic materials. They resemble small coils: atomic elementary magnets - so-called spins - which are arranged in closed vortex structures. Skyrmions are topologically protected, i.e. their shape is unchangeable, and are therefore considered energy-efficient data storage devices.

Soft x-rays at BESSY II

In a series of experiments on the MAXYMUS beamline of BESSY II, the researchers have now shown that a bundled soft X-ray beam with a diameter of less than 50 nanometres can generate a magnetic vortex of 100 nanometres. In order to make the skyrmions visible, the researchers use the MAXYMUS scanning transmission X-ray microscope. This is a high-resolution X-ray microscope, weighing 1.8 tons, located at BESSY II.

Serendipitous discovery

This discovery was made by chance, as this type of interaction between light and matter was previously completely unknown. "We don't know how light writes matter," says Dr. Joachim Gräfe, head of the research group Nanomagnonics and Magnetization Dynamics at MPI-IS. He is one of the main authors of the study, which was published in Nature communications in February. "We can describe certain properties phenomenologically. We know that it has to do with the X-ray beam. It's not just an energy input like heat that writes the Skyrmion. It's really a resonant effect: we can directly excite the atoms responsible for magnetism." This enabled him and his team to write "MPI-IS" (see figure).

Outlook: Future Spintronics

The results are particularly relevant for the development and production of so-called spintronic data carriers, which store information in skyrmions. They are considered to be energy-efficient and less susceptible to interference. However, this development can only take its course if skyrmions can be created precisely and with a perfect fit - and this has now become possible for the first time. "Our goal is for X-rays to serve as a tool for determining or writing the arrangement of magnetic structures in the future."

red/MPI-IS

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.