New interaction between light and matter discovered at BESSY II

A bundled soft X-ray beam with a diameter of less than 50 nanometers writes numerous magnetic vortices, which together form the term "MPI-IS".

A bundled soft X-ray beam with a diameter of less than 50 nanometers writes numerous magnetic vortices, which together form the term "MPI-IS". © Alejandro Posada, Felix Groß/MPI-IS

A German-Chinese team led by Gisela Schütz from the MPI for Intelligent Systems has discovered a new interaction between light and matter at BESSY II. They succeeded in creating nanometer-fine magnetic vortices in a magnetic layer. These are so-called skyrmions, and candidates for future information technologies.

Skyrmions are 100 nanometre small three-dimensional structures that occur in magnetic materials. They resemble small coils: atomic elementary magnets - so-called spins - which are arranged in closed vortex structures. Skyrmions are topologically protected, i.e. their shape is unchangeable, and are therefore considered energy-efficient data storage devices.

Soft x-rays at BESSY II

In a series of experiments on the MAXYMUS beamline of BESSY II, the researchers have now shown that a bundled soft X-ray beam with a diameter of less than 50 nanometres can generate a magnetic vortex of 100 nanometres. In order to make the skyrmions visible, the researchers use the MAXYMUS scanning transmission X-ray microscope. This is a high-resolution X-ray microscope, weighing 1.8 tons, located at BESSY II.

Serendipitous discovery

This discovery was made by chance, as this type of interaction between light and matter was previously completely unknown. "We don't know how light writes matter," says Dr. Joachim Gräfe, head of the research group Nanomagnonics and Magnetization Dynamics at MPI-IS. He is one of the main authors of the study, which was published in Nature communications in February. "We can describe certain properties phenomenologically. We know that it has to do with the X-ray beam. It's not just an energy input like heat that writes the Skyrmion. It's really a resonant effect: we can directly excite the atoms responsible for magnetism." This enabled him and his team to write "MPI-IS" (see figure).

Outlook: Future Spintronics

The results are particularly relevant for the development and production of so-called spintronic data carriers, which store information in skyrmions. They are considered to be energy-efficient and less susceptible to interference. However, this development can only take its course if skyrmions can be created precisely and with a perfect fit - and this has now become possible for the first time. "Our goal is for X-rays to serve as a tool for determining or writing the arrangement of magnetic structures in the future."

red/MPI-IS


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.

  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.