On the road to non-toxic and stable perovskite solar cells

The illustration shows the changes in the structure of FASnI<sub>3</sub>:PEACl films during treatment at different temperatures.

The illustration shows the changes in the structure of FASnI3:PEACl films during treatment at different temperatures. © Meng Li/HZB

The promising halide perovskite materials for solar energy conversion show high efficiencies, but this comes at a cost: The best perovskite materials incorporate toxic lead which poses a hazard to the environment. To replace lead by less toxic elements is not easy since lead-free perovskites show lower stability and poor efficiencies. Now, an international collaboration has engineered a new hybrid perovskite material with promising efficiency and stability.

Among the new materials for solar cells, the halide perovskites are considered particularly promising. Within a few years, the efficiency of such perovskite solar cells raised from a few percents to over 25 %. Unfortunately, the best perovskite solar cells contain toxic lead, which poses a hazard to the environment. However, it is surprisingly challenging to replace the lead with less toxic elements. One of the best alternatives is tin. Halogenide perovskites with tin instead of lead should show excellent optical properties, but in practice, their efficiencies are mediocre and decrease rapidly. And this rapid "aging" is their main disadvantage: the tin cations in the perovskite structure react very quickly with oxygen from the environment so that their efficiency drops.

Now, an international cooperation led by Antonio Abate, HZB, and Zhao-Kui Wang, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, China, has achieved a breakthrough that opens up a path to non-toxic perovskite-based solar cells that provides stable performance over a long period. They also use tin instead of lead but have created a two-dimensional structure by inserting organic groups within the material, which leads to so-called 2D Ruddlesden-Popper phases. "We use phenylethylammonium chloride (PEACl) as an additive to the perovskite layers. Then we carry out a heat treatment while the PEACl molecules migrate into the perovskite layer. This results in vertically ordered stacks of two-dimensional perovskite crystals" explains first author Dr Meng Li. Li is a postdoc in Abate’s group and has organised the close cooperation with the Chinese partners. At the Shanghai Synchrotron Radiation Facility (SSRF), they were able to precisely analyse the morphology and crystal characteristics of the perovskite films after different annealing treatments.

The best of these lead-free perovskite solar cells achieved an efficiency of 9.1 % and high stability values, both under daytime conditions and in the dark. The PEACl molecules accumulate between the crystalline perovskite layers as a result of the heat treatment and form a barrier that prevents the tin cations from oxidising. "This work paves the way for more efficient and stable lead-free perovskite solar cells," Abate is convinced.

arö


You might also be interested in

  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Helmholtz Zentrum Berlin is a bicycle-friendly employer
    News
    21.02.2024
    Helmholtz Zentrum Berlin is a bicycle-friendly employer
    Since 2017, the German Cyclists' Federation (ADFC) has been awarding the EU-wide "Bicycle-Friendly Employer" certification. The Helmholtz-Zentrum Berlin has now been awarded the coveted silver seal. With this, the HZB wants to be even more attractive as an employer, especially for international applicants.

  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.