User research at BESSY II: Formation of a 2D meta-stable oxide in reactive environments

Illustration of a Cu<sub>x</sub>O<sub>y</sub> structure formed on a AgCu alloy in oxidizing environments described in this work. (c) ACS Applied Materials &amp; Interfaces.

Illustration of a CuxOy structure formed on a AgCu alloy in oxidizing environments described in this work. (c) ACS Applied Materials & Interfaces. © (2020) ACS Publishing

The chemical behaviour of solid material surfaces is an important physical characteristic for applications of catalysis, chemical sensors, fuel cells and electrodes. A research team from the Max Planck Institute for Chemical Energy Conversion has now described an important phenomenon that can occur when metal alloys are exposed to reactive environments at the synchrotron source BESSY II.

In a recent work published in ACS Applied Materials & Interfaces, a researchers’ team led by Dr. Mark Greiner (Surface Structure Analysis, Department of Heterogeneous Reactions) demonstrates an important phenomenon that can occur when metal alloys face reactive environments. They can form meta-stable 2D oxides on their surfaces. Such oxides exhibit chemical and electronic properties that are different from their bulk counterparts. Due to their meta-stability, their existence is also difficult to predict.

This publication displays the results of a thorough investigation of one such oxide, confirming previous theoretical predictions of its existence, and helps to advance the understanding of the complexity of solid surfaces in reactive environments. The investigations were performed using in-situ photon electron spectroscopy at the ISISS beamline and the UE49-PGM beamline at BESSY II.

This investigation was a collaborative research effort between the Max Planck Institute for Chemical Energy Conversion, the Max-Planck-Institut für Eisenforschung, the Fritz Haber Institute of the Max Planck Society, the Helmholtz Zentrum Berlin and the Italian National Research Council Institute of Materials (CNR-IOM).

(sz/Max-Planck-Institut für chemische Energiekonversion)


You might also be interested in

  • Fractons as information storage: Not yet quite tangible, but close
    Science Highlight
    26.05.2023
    Fractons as information storage: Not yet quite tangible, but close
    A new quasiparticle with interesting properties has appeared in solid-state physics - but so far only in the theoretical modelling of solids with certain magnetic properties. An international team from HZB and Freie Universität Berlin has now shown that, contrary to expectations, quantum fluctuations do not make the quasiparticle appear more clearly, but rather blur its signature.
  • Graphene on titanium carbide triggers a novel phase transition
    Science Highlight
    25.05.2023
    Graphene on titanium carbide triggers a novel phase transition
    Researchers have discovered a Lifshitz-transition in TiC, driven by a graphene overlayer, at the photon source BESSY II. Their study sheds light on the exciting potential of 2D materials such as graphene and the effects they can have on neighboring materials through proximity interactions.
  • Girls on Tour at the Long Night of Science: Be there!
    News
    17.05.2023
    Girls on Tour at the Long Night of Science: Be there!
    Are you a 10th to 13th grade student interested in mathematics and science? Then secure your free VIP ticket for a tour with exciting experiments and insights during the Long Night of Science! Meet female scientists who are passionate about making our world a better place! 17.06. , from 5.30 pm, Adlershof Research Campus.