Optimize opto-electronic devices with new compact measuring system

The LumY Pro is an easy-to-use, non-invasive and versatile system with unparalleled compactness to swiftly quantify absolute electro- and photoluminescence photon fluxes of thin film absorbers, layer stacks or complete devices under various operating conditions.

The LumY Pro is an easy-to-use, non-invasive and versatile system with unparalleled compactness to swiftly quantify absolute electro- and photoluminescence photon fluxes of thin film absorbers, layer stacks or complete devices under various operating conditions.

In order to develop efficient opto-electronic devices such as solar cells or LEDs, it is crucial to improve the quality of the semiconductors. To achieve this, it is necessary to determine the luminescence yield of the semiconductor material. For this characterization, a research team at HZB has developed a new measuring device that precisely determines the luminescence and is also very compact. In order to evaluate the potential for commercial applications, the team now receives a Field Study Fellowship from the Helmholtz Association.

A research team from HZB has already built a working prototype of the instrument, which will now be developed into a commercial product. The aim is to make the "LumY Pro" measuring system, which was developed and optimised for their own research, available to a wide range of users - in the spirit of technology and knowledge transfer. The researchers are focusing on users from research and industry who are working on the further development of opto-electronic devices such as solar cells and LEDs.

The "LumY Pro" measuring device is smaller than a shoe box (20x22x12 cm) and can also be used in the protective atmosphere of a glove box. It measures the quantity of photons or electrons being injected into a sample and the quantity of photons emitted by the excitation (absolute photon or electroluminescence). This enables researchers to draw conclusions about the charge carrier density in the absorber and to look in detail at where losses occur in the device or layer.

Measuring the quality of film absorbers, layer stacks and complete devices

Single layers, but also layer stacks and complete devices can be examined with flexibly adjustable light intensities and electrical voltages. The detailed analysis is integrated in a specially developed measuring and evaluation software. The software and the prototype of the system have already been successfully tested on various semiconductors in cooperation with the Helmholtz Innovation Lab HySPRINT.

Applicable for many semiconductor materials - evaluation software is included

LumY Pro can be used for the quality characterization of organic-inorganic perovskites, but also of other semiconductor materials such as kesterites or gallium arsenide. The development team hopes to accelerate the research and development of such opto-electronic devices and reduce the consumption of resources. The potential is great, because more than 400 research groups worldwide are working on solar cells made of perovskites alone.

"A precise measuring system that combines all these characterization possibilities is currently lacking on the market. We now want to implement this in a compact, versatile and yet easy to use product," says Dr. Lukas Kegelmann from the project team. The field study will now show how large the market potential is and which applications and functionalities are particularly interesting for users from research and industry.  

LumY Pro was developed by scientists of the HZB groups around Dr. Thomas Unold, Dr. Eva Unger and Prof. Dr. Steve Albrecht.

(sz)

  • Copy link

You might also be interested in

  • BESSY II: Magnetic ‘microflowers’ enhance local magnetic fields
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance local magnetic fields
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.
  • The future of energy: recommendations from science to politics
    News
    21.03.2025
    The future of energy: recommendations from science to politics
    Experts from HZB have contributed their expertise to the position papers briefly presented here. The topics include the development of innovative materials for a sustainable energy supply and the circular economy. Experts from different areas have jointly formulated solutions and recommendations for action.

  • New material for efficient separation of Deuterium at elevated Temperatures
    Science Highlight
    19.03.2025
    New material for efficient separation of Deuterium at elevated Temperatures
    A novel porous material capable of separating deuterium (D2) from hydrogen (H2) at a temperature of 120 K has been introduced. Notably, this temperature exceeds the liquefaction point of natural gas, thus facilitating large-scale industrial applications. This advancement presents an attractive pathway for the economical production of D2 by leveraging the existing infrastructure of liquefied natural gas (LNG) production pipelines. The research conducted by Ulsan National Institute of Science & Technology (UNIST), Korea, Helmholtz-Zentrum Berlin, Heinz Maier Leibnitz Zentrum (MLZ), and Soongsil University, Korea, has been published in Nature Communications.