A new cooling tower flying to BESSY's roof

The truck transporting the crane arrives early on Wednesday, September 2. Grey clouds over Adlershof, but that doesn't stop the team from setting up the crane.

The truck transporting the crane arrives early on Wednesday, September 2. Grey clouds over Adlershof, but that doesn't stop the team from setting up the crane.

The crane is installed directly in front of the truck sluice of the storage ring hall.

The crane is installed directly in front of the truck sluice of the storage ring hall.

The puzzle begins, the swivel arm (blue) is over 90m long.

The puzzle begins, the swivel arm (blue) is over 90m long.

The crane weighs 96 tons, plus additional 90 tons counterweight (see picture). The cooling tower itself weighs 2 tons.

The crane weighs 96 tons, plus additional 90 tons counterweight (see picture). The cooling tower itself weighs 2 tons.

Now all is ready and waiting for the mission to start on Thursday 3rd September.

Now all is ready and waiting for the mission to start on Thursday 3rd September.

Warming up : the frame on which the cooling tower will later stand is lifted onto the roof. It is Thursday before nine o'clock, the sky is blue, the sun is shining!

Warming up : the frame on which the cooling tower will later stand is lifted onto the roof. It is Thursday before nine o'clock, the sky is blue, the sun is shining!

Even from the Ruska Ufer it can not be overlooked: there is something happening at BESSY II. Such a voluminous crane is used at HZB for the first time.

Even from the Ruska Ufer it can not be overlooked: there is something happening at BESSY II. Such a voluminous crane is used at HZB for the first time.

</p> <p>After a few final touches, the time has come: around 9:30 am the cooling tower is lifted into the air.

After a few final touches, the time has come: around 9:30 am the cooling tower is lifted into the air.

For the admirative observers it goes almost too fast. The cooling tower flies...

For the admirative observers it goes almost too fast. The cooling tower flies...

...and floats towards the BESSY II courtyard, over the green roof.

...and floats towards the BESSY II courtyard, over the green roof.

Straight as a die it goes towards the installation lot.

Straight as a die it goes towards the installation lot.

The installation team is already waiting there, now the precision work continues. Around 10:15 a.m. the cooling tower is in its designated place.

The installation team is already waiting there, now the precision work continues. Around 10:15 a.m. the cooling tower is in its designated place.

Let me introduce you to BESSY's fourth cooling tower!

Let me introduce you to BESSY's fourth cooling tower!

Here a little sneak peak into the inside of the cooling tower.

Here a little sneak peak into the inside of the cooling tower.

Soon after the "exciting part" is over and the team starts dismantling again the crane. The parts are carefully disassembled and wait next to BESSY II for their next mission.

Soon after the "exciting part" is over and the team starts dismantling again the crane. The parts are carefully disassembled and wait next to BESSY II for their next mission.

Early September a huge crane near BESSY II could be seen from afar. A series of pictures for you to discover the exciting installation of the fourth cooling tower.

"We have been planning this for more than a year," explains Christian Jung, who is coordinating the work with Ingo Müller during the shutdown of the electron storage ring BESSY II.
Both watch with great interest as the twelve specialists assemble the crane, attach the cooling tower, then swing it over the roof and finally install it. Both are certain that the transport of the fourth cooling tower works only with detailed planning and a great deal of precision. "We have never needed such a large crane before," says Ingo Müller. Some HZB colleagues come by, pull out cell phones and capture these moments: you don't see something like that every day.
The installation of the fourth cooling tower, which is now safely located in the courtyard in the middle of the ring building, is one of the biggest jobs during the shutdown.

Read more about the shutdown period: The shutdown at BESSY II: busy activity in the ring

Pictures: Christian Feiler, Ingo Müller and Florentine Krawatzek.


fk

  • Copy link

You might also be interested in

  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.
  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.