A new cooling tower flying to BESSY's roof

The truck transporting the crane arrives early on Wednesday, September 2. Grey clouds over Adlershof, but that doesn't stop the team from setting up the crane.

The truck transporting the crane arrives early on Wednesday, September 2. Grey clouds over Adlershof, but that doesn't stop the team from setting up the crane.

The crane is installed directly in front of the truck sluice of the storage ring hall.

The crane is installed directly in front of the truck sluice of the storage ring hall.

The puzzle begins, the swivel arm (blue) is over 90m long.

The puzzle begins, the swivel arm (blue) is over 90m long.

The crane weighs 96 tons, plus additional 90 tons counterweight (see picture). The cooling tower itself weighs 2 tons.

The crane weighs 96 tons, plus additional 90 tons counterweight (see picture). The cooling tower itself weighs 2 tons.

Now all is ready and waiting for the mission to start on Thursday 3rd September.

Now all is ready and waiting for the mission to start on Thursday 3rd September.

Warming up : the frame on which the cooling tower will later stand is lifted onto the roof. It is Thursday before nine o'clock, the sky is blue, the sun is shining!

Warming up : the frame on which the cooling tower will later stand is lifted onto the roof. It is Thursday before nine o'clock, the sky is blue, the sun is shining!

Even from the Ruska Ufer it can not be overlooked: there is something happening at BESSY II. Such a voluminous crane is used at HZB for the first time.

Even from the Ruska Ufer it can not be overlooked: there is something happening at BESSY II. Such a voluminous crane is used at HZB for the first time.

</p> <p>After a few final touches, the time has come: around 9:30 am the cooling tower is lifted into the air.

After a few final touches, the time has come: around 9:30 am the cooling tower is lifted into the air.

For the admirative observers it goes almost too fast. The cooling tower flies...

For the admirative observers it goes almost too fast. The cooling tower flies...

...and floats towards the BESSY II courtyard, over the green roof.

...and floats towards the BESSY II courtyard, over the green roof.

Straight as a die it goes towards the installation lot.

Straight as a die it goes towards the installation lot.

The installation team is already waiting there, now the precision work continues. Around 10:15 a.m. the cooling tower is in its designated place.

The installation team is already waiting there, now the precision work continues. Around 10:15 a.m. the cooling tower is in its designated place.

Let me introduce you to BESSY's fourth cooling tower!

Let me introduce you to BESSY's fourth cooling tower!

Here a little sneak peak into the inside of the cooling tower.

Here a little sneak peak into the inside of the cooling tower.

Soon after the "exciting part" is over and the team starts dismantling again the crane. The parts are carefully disassembled and wait next to BESSY II for their next mission.

Soon after the "exciting part" is over and the team starts dismantling again the crane. The parts are carefully disassembled and wait next to BESSY II for their next mission.

Early September a huge crane near BESSY II could be seen from afar. A series of pictures for you to discover the exciting installation of the fourth cooling tower.

"We have been planning this for more than a year," explains Christian Jung, who is coordinating the work with Ingo Müller during the shutdown of the electron storage ring BESSY II.
Both watch with great interest as the twelve specialists assemble the crane, attach the cooling tower, then swing it over the roof and finally install it. Both are certain that the transport of the fourth cooling tower works only with detailed planning and a great deal of precision. "We have never needed such a large crane before," says Ingo Müller. Some HZB colleagues come by, pull out cell phones and capture these moments: you don't see something like that every day.
The installation of the fourth cooling tower, which is now safely located in the courtyard in the middle of the ring building, is one of the biggest jobs during the shutdown.

Read more about the shutdown period: The shutdown at BESSY II: busy activity in the ring

Pictures: Christian Feiler, Ingo Müller and Florentine Krawatzek.


fk


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.

  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.