HZB und TU Berlin: Neue gemeinsame Forschungsgruppe an BESSY II

Prof. Birgit Kanngießer leitet eine Forschungsgruppe zu Röntgenmethoden, die von TU Berlin und HZB gemeinsam finanziert wird.

Prof. Birgit Kanngießer leitet eine Forschungsgruppe zu Röntgenmethoden, die von TU Berlin und HZB gemeinsam finanziert wird. © Martin Weinhold

Birgit Kanngießer baut eine gemeinsame Forschungsgruppe zur Kombination von Röntgenmethoden in Laboren und an Großgeräten auf. Insbesondere will die Physikerin untersuchen, wie sich Röntgenexperimente  an kleineren Labor-Instrumenten optimal mit komplexeren Experimenten ergänzen, die nur an Synchrotronquellen wie BESSY II möglich sind. 

Prof. Dr. Birgit Kanngießer ist Professorin für Analytische Röntgenphysik an der Technischen Universität Berlin und leitet dort auch eine große Arbeitsgruppe. Zusammen mit dem Max Born Institut hat sie das BLiX  (Berlin laboratory for innovative X-ray technologies) aufgebaut, welches am Synchrotron etablierte Röntgenmethoden in das Labor holt. Bei BESSY II war sie bereits als eine der ersten Nutzer*innen involviert.

Nun finanzieren HZB und TU Berlin eine gemeinsame Forschungsgruppe, die von Birgit Kanngießer geleitet wird, um diese Zusammenarbeit noch zu verstärken. Dies soll auch den Wissens- und Technologieaustausch zwischen BESSY II und universitären Laboren beschleunigen. Die gemeinsame Forschungsgruppe läuft unter dem Titel  ‚Combined X-ray methods at BLiX and BESSY II - SyncLab‘. Auf der Seite der TU Berlin ist das Berlin laboratory for innovative X-ray technologies (BLiX) eingebunden.

Schwerpunktmäßig will Kanngießer mit der gemeinsamen Forschungsgruppe zunächst evaluieren, wie sich zeitaufgelöste Messungen mit der Methode der Röntgennahkantenspektroskopie im weichen Röntgenbereich an kleineren Instrumenten sowie an BESSY II gegenseitig ergänzen könnten. Weitere analytische und bildgebende Röntgenmethoden sollen in Zukunft folgen.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.