HZB and TU Berlin: New joint research group at BESSY II

Prof. Birgit Kanngießer heads a joint research group on X-ray methods, which is funded by TU Berlin and HZB.

Prof. Birgit Kanngießer heads a joint research group on X-ray methods, which is funded by TU Berlin and HZB. © Martin Weinhold

Birgit Kanngießer is setting up a joint research group to combine X-ray methods in laboratories and at large-scale facilities. In particular, the physicist wants to investigate how X-ray experiments on smaller laboratory instruments can be optimally complemented with more complex experiments that are only possible at synchrotron sources such as BESSY II. 

Prof. Dr. Birgit Kanngießer is professor of analytical X-ray Physics at the Technische Universität Berlin, where she also heads a large research group. Together with the Max Born Institute she has build up BLiX (Berlin laboratory for innovative X-ray technologies), which brings established X-ray methods from the synchrotron into the laboratory. At BESSY II she was involved as one of the first users from the early on.

Now HZB and TU Berlin are funding a joint research group headed by Birgit Kanngießer to strengthen this cooperation. This should also accelerate the exchange of knowledge and technology between BESSY II and university laboratories.

The joint research group is called 'Combined X-ray methods at BLiX and BESSY II - SyncLab'. On the TU Berlin side, the Berlin laboratory for innovative X-ray technologies (BLiX) is integrated. Kanngießer will initially focus on evaluating how time-resolved measurements using near-edge X-ray spectroscopy in the soft X-ray range on smaller instruments and at BESSY II could complement each other. Further analytical and imaging X-ray methods are to follow in the future.

arö

You might also be interested in

  • Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Science Highlight
    11.08.2022
    Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Electrical energy from wind or sun can be stored as chemical energy in hydrogen, an excellent fuel and energy carrier. The prerequisite for this, however, is efficient electrolysis of water with inexpensive catalysts. For the oxygen evolution reaction at the anode, nanostructured nickel silicide now promises a significant increase in efficiency. This was demonstrated by a group from the HZB, Technical University of Berlin and the Freie Universität Berlin as part of the CatLab research platform with measurements among others at BESSY II.
  • RBB Abendschau on visit at CatLab
    News
    01.08.2022
    RBB Abendschau on visit at CatLab
    CatLab got a visit from the rbb Abendschau.
    Under the title "Der Weg weg vom Erdgas" (The way away from natural gas), the programme was broadcast on Sunday, 31st July in the rbb Abendschau and will be available in the rbb media library for 7 days.
  • Michelle Browne sets up a young investigator research group on electrocatalysis at HZB
    News
    01.08.2022
    Michelle Browne sets up a young investigator research group on electrocatalysis at HZB
    Dr. Michelle Browne establishes her own young investigator group at the HZB . Starting in August, the group is co-funded by the Helmholtz Association for the next five years. The electrochemist from Ireland concentrates on electrolytically active novel material systems and wants to develop next-generation electrocatalysts, for example hydrogen production. At HZB she will find the perfect environment to conduct her research.