HZB & IKZ bundle their competencies In crystalline energy and quantum materials

The participants after signing the cooperation agreement between IKZ and HZB in corona-conform distance: (from left to right) Dr. Andreas Popp (IKZ), Dr. Manuela Urban (FVB), Dr. Peter Gaal (IKZ), Prof. Dr. Catherine Dubourdieu (HZB), Prof. Dr. Thomas Schröder (IKZ), Prof. Dr. Bernd Rech (HZB), Thomas Frederking (HZB).

The participants after signing the cooperation agreement between IKZ and HZB in corona-conform distance: (from left to right) Dr. Andreas Popp (IKZ), Dr. Manuela Urban (FVB), Dr. Peter Gaal (IKZ), Prof. Dr. Catherine Dubourdieu (HZB), Prof. Dr. Thomas Schröder (IKZ), Prof. Dr. Bernd Rech (HZB), Thomas Frederking (HZB). © Sandra Fischer/HZB

On September 11, 2020, the Helmholtz-Zentrum Berlin (HZB) and the Leibniz-Institut für Kristallzüchtung (IKZ) signed a cooperation agreement to advance joint research on energy and quantum materials. As part of the cooperation, new types of X-ray optics for synchrotron radiation sources are also being developed.

IKZ and HZB share a long history of joint collaboration: IKZ scientists use the BESSY II radiation source from the HZB on a regular basis for their material science studies. In turn, the crystal growers of the IKZ develop and manufacture components that bring out the special properties of BESSY II.

"We are very pleased that we can strengthen our close cooperation with the cooperation agreement,” says Prof. Bernd Rech, scientific director at the HZB. “At BESSY II we offer a variety of x-ray analytical methods for the analysis of complex material systems. As part of our cooperation, we can use our complementary competencies specifically to jointly develop research areas in energy research and quantum technologies.”

Prof. Thomas Schröder, scientific director at the IKZ, also emphasizes the opportunities that the cooperation between the two research institutions allows: “The IKZ is very interested in initiating joint R&D projects on materials for photovoltaics and power electronics with the scientists of the HZB to maximize our impact in this research area.“ Since Prof. Schröder himself spent part of his career in synchrotron research, there is also a personal affinity towards materials and methods development for large-scale research facilities. “Today I am very happy that IKZ can start new R&D projects with BESSY II in order to support the synchrotron sources with our crystalline materials, for example through active and passive X-ray optics.”

Short description of IKZ:

The Leibniz-Institut für Kristallzüchtung in Berlin-Adlershof is an international competence center for science, technology, service and transfer in the field of crystalline materials. The research and development spectrum ranges from basic and applied research to pre-industrial research tasks. The IKZ develops innovations in crystalline materials through its expertise in plant engineering, numerical simulation and crystal growth to achieve crystalline materials of the highest quality with tailored properties. The unique selling point of the institute is the research on volume crystals. This work is accompanied by research and development on nanostructures and thin films as well as strong theoretical and experimental research into materials.

IKZ


You might also be interested in

  • Fertilisation under the X-ray beam
    Science Highlight
    19.03.2024
    Fertilisation under the X-ray beam
    After the egg has been fertilized by a sperm, the surrounding egg coat tightens, mechanically preventing the entry of additional sperm and the ensuing death of the embryo. A team from the Karolinska Institutet has now gained this new insight through measurements at the X-ray light sources BESSY II, DLS and ESRF. 
  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Where quantum computers can score
    Science Highlight
    15.03.2024
    Where quantum computers can score
    The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.