Modelling shows which quantum systems are suitable for quantum simulations

Ultracold atoms in an optical lattice have been considered for quantum simulation.

Ultracold atoms in an optical lattice have been considered for quantum simulation. © arö/HZB

A joint research group led by Prof. Jens Eisert of Freie Universität Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems. This is done with the help of complex solid state systems that can be studied experimentally. The study was published in the renowned journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).


"The real goal is a robust quantum computer that generates stable results even when errors occur and corrects these errors," explains Jens Eisert, professor at Freie Universität Berlin and head of a joint research group at HZB. So far, the development of robust quantum computers is still a long way off, because quantum bits react extremely sensitively to the smallest fluctuations in environmental parameters.

New approach

But now a new approach could promise success: two postdocs from the group around Jens Eisert, Maria Laura Baez and Marek Gluza have taken up an idea of Richard Feynman, a brilliant US-American physicist of the post-war period. Feynman had proposed to use real systems of atoms with their quantum physical properties to simulate other quantum systems. These quantum systems can consist of atoms strung together like pearls in a string with special spin properties, but could also be ion traps, Rydberg atoms, superconducting Qbits or atoms in optical lattices. What they have in common is that they can be created and controlled in the laboratory. Their quantum physical properties could be used to predict the behaviour of other quantum systems. But which quantum systems would be good candidates? Is there a way to find out in advance?

Finding good candidates

Eisert's team has now investigated this question using a combination of mathematical and numerical methods. In fact, the group showed that the so-called dynamic structure factor of such systems is a possible tool to make statements about other quantum systems. This factor indirectly maps how spins or other quantum quantities behave over time, it is calculated by a Fourier transformation.

Bridging the gap

"This work builds a bridge between two worlds," explains Jens Eisert. "On the one hand, there is the Condensed Matter Community, which studies quantum systems and gains new insights from them - and on the other hand there is Quantum Informatics - which deals with quantum information. We believe that great progress will be possible if we bring the two worlds together," says the scientist.

arö

You might also be interested in

  • Humboldt Fellow Alexander Gray comes to HZB
    News
    12.08.2022
    Humboldt Fellow Alexander Gray comes to HZB
    Alexander Gray from Temple University in Philadelphia, USA, is working with HZB physicist Florian Kronast to investigate novel 2D quantum materials at BESSY II. With the fellowship from the Alexander von Humboldt Foundation, he can now deepen this cooperation. At BESSY II, he wants to further develop depth-resolved X-ray microscopic and spectroscopic methods in order to investigate 2D quantum materials and devices for new information technologies even more thoroughly.
  • Buckyballs on gold are less exotic than graphene
    Science Highlight
    21.07.2022
    Buckyballs on gold are less exotic than graphene
    C60 molecules on a gold substrate appear more complex than their graphene counterparts, but have much more ordinary electronic properties. This is now shown by measurements with ARPES at BESSY II and detailed calculations.
  • Third-highest oxidation state secures rhodium a place on the podium
    Science Highlight
    14.07.2022
    Third-highest oxidation state secures rhodium a place on the podium
    Oxidation states of transition metals describe how many electrons of an element are already engaged in bonding, and how many are still available for further reactions. Scientists from Berlin and Freiburg have now discovered the highest oxidation state of rhodium, indicating that rhodium can involve more of its valence electrons in chemical bonding than previously thought. This finding might be relevant for the understanding of catalytic reactions involving highly-oxidized rhodium. The result was recognized as a „very important paper“ in Angewandte Chemie.